首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Zirconyl-molybdopyrophosphate-tributyl phosphate (ZMPP-TBP) was a novel organic-inorganic composite adsorbent prepared by co-precipitation method and used in the adsorption of uranium from aqueous solution in batch adsorption experiments. The as-obtained product was characterized using SEM, energy dispersive X-ray spectroscopy (EDX), XRD and BET-N2 adsorption measurements. The study had been conducted to investigate the effects of solution pH, temperature, contact time, initial concentration and coexisting ions. A maximum removal of 99.31% was observed for an initial concentration 5 mg/L, at pH 6.0 and an adsorbent dose of 1.0 g/L. The isothermal data were fitted with both Langmuir and Freundlich equations, but the data fitted the former better than the latter. According to the evaluation using the Langmuir equation, the maximum adsorption capacity of uranium (VI) was 196.08 mg/g at 293 K and pH 6.0. The pseudo-first-order kinetic model and pseudo-second-order kinetic model were used to describe the kinetic data, and the pseudo-second-order kinetic model was better. The thermodynamic parameter ΔG was calculated, the negative ΔG values of uranium (VI) at different temperature showed that the adsorption process was spontaneous. The good reusability of ZMPP-TBP also indicated that the ZMPP-TBP was a very promising adsorbent for uranium adsorption from aqueous solution.  相似文献   

2.
In the present study, the nonlinear analysis method was used to evaluate the kinetics and equilibrium for Cd(II) adsorption on crosslinked starch phosphate (SP) from aqueous solution. The pseudo-first-order, pseudo-second-order and Elovich kinetic models were applied to test the kinetics experimental data, and the pseudo-first-order kinetic model provides a best correlation of the experimental data. Adsorption equilibrium data were fit by Langmuir, Freundlich, Dubinin-Radushkevich, and Sips isotherms. The results show that the data are best described by the Sips isotherms with a maximum adsorption capacity of 2.00 mmol/g. The effects of initial pH, and SP dose on the Cd(II) adsorption were also investigated. The adsorption capacities of Cd(II) on SP increase with the pH increasing from 2.0 to 8.0.  相似文献   

3.
The uranium(VI) accumulation was studied in detail by using the biomass of mangrove endophytic fungus Fusarium sp.#ZZF51 from the South China Sea. The uranium(VI) biosorption process onto the tested fungus powders was optimized at pH 4.0, adsorption time 60 min, and uranium(VI) initial concentration 50 mg L−1 with 61.89% of removal efficiency. According to Fourier transform infrared spectra for the tested fungus before and after loaded with uranium(VI), the results showed that both of hydroxyl and carboxyl groups acted as the important roles in the adsorption process. In addition, the experimental data were analyzed by using parameter and kinetic models, and it was obtained that the Langmuir isotherm model and the pseudo-second-order kinetic model provided better correlation with the experimental data for adsorption of uranium(VI).  相似文献   

4.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

5.
The adsorption of uranium(VI) from aqueous solutions onto activated carbon has been studied using a batch adsorber. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated and optimized conditions determined (contact time 240 min; pH 3.0+/-0.1; initial uranium concentration 100 mg/L; temperature 293.15 K). The experimental data were analyzed using sorption kinetic models (pseudo-first- and pseudo-second-order equations) to determine the equation that fits best our experimental results. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of activated carbon and experimental results showed this to be 28.30 mg/g. The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models have been applied and the data correlate well with Freundlich model and that the sorption is physical in nature (the activation energy Ea=7.91 kJ/mol). Thermodynamic parameters (DeltaHads0=-50.53 kJ/mol, DeltaSads0=-98.76 J/mol K, DeltaGads(293.15 K)0=-21.61 kJ/mol) showed the exothermic heat of adsorption and the feasibility of the process.  相似文献   

6.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

7.
Neem sawdust was used to develop an effective carbon adsorbent. This adsorbent was used for the removal of Congo Red (CR) from aqueous solution. The data suggest that the pH of aqueous solutions influences CR removal due to the decrease of removal efficiency with increasing pH. An optimal pH < 3 for the adsorption of CR onto neem sawdust carbon (NSDC) was determined. The experimental data were analysed by the Langmuir, Freundlich, Redlich-Peterson, Toth, Temkin, Sips and Dubinin-Radushkevich models of adsorption. Three simplified kinetic models based on pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were used to describe the adsorption process. It was shown that the adsorption of CR could be described by the pseudo-second-order equation, suggesting that the adsorption occurs as a chemisorption process. The results indicate that the NSDC can be used as a low cost adsorbent alternative to commercial activated carbon for the removal of dyes from wastewaters.  相似文献   

8.
The sorption of uranium(VI) from aqueous solutions was investigated using synthesized magnesium silicate hollow spheres as a novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, contact time and initial U(VI) concentrations on uranium sorption efficiency. The desorbing of U(VI) and the effect of coexisting ions were also investigated. Kinetic studies showed that the sorption followed a pseudo-second-order kinetic model. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 25–400 mg/L. The maximum uranium sorption capacity onto magnesium silicate hollow spheres was estimated to be about 107 mg/g under the experimental conditions. Desorption of uranium was achieved using inorganic acid as the desorbing agent. The practical utility of magnesium silicate hollow spheres for U(VI) uptake was investigated with high salt concentration of intercrystalline brine. This work suggests that magnesium silicate hollow spheres can be used as a highly efficient adsorbent for removal of uranium from aqueous solutions.  相似文献   

9.
In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin–Radushkevich (D–R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D–R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH°), entropy (ΔS°) and free energy change (ΔG°) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models.  相似文献   

10.
The removal of Cr (VI) from aqueous solutions using Alligator weed, a freshwater macrophyte, was investigated in batch studies. Various factors including solution pH, Cr (VI) concentrations, agitation time, and temperature were taken into account and promising results obtained. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The kinetic data were analyzed using several models, including the pseudo-second-order equation, external diffusion model, and intraparticle diffusion model. The comparison gave insight about the mechanism of adsorption and potential rate controlling step. The results suggested that the Cr (VI) adsorption at all temperatures was best represented by the pseudo-second-order equation. The external film diffusion played an important role in the adsorption mechanism. The Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present system were analyzed. The best interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The Alligator weed could serve as low-cost adsorbent to remove Cr (VI) from aqueous solutions.  相似文献   

11.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

12.
13.
In this study, poly(acrylic acid-co-acrylamide) (PAAAM) hydrogels were used to remove uranium (VI) ions in wastewater and characterized by FTIR, SEM, EDX. The effects of pH value, coexistence of ionic strength, contact time, initial U (VI) ion concentration and adsorption temperature were also studied. Adsorption data fitted well with pseudo-second-order, intra-particle diffusion model and Langmuir isotherm mode, the maximum adsorption capacity of U(VI) was 713.24 mg g?1. Thermodynamic analysis shows that the adsorption of U(VI) is spontaneous endothermic. PAAAM hydrogel has excellent regeneration performance, after five time adsorption–desorption cycles, the adsorbent still maintained 99.24% adsorption capacity.  相似文献   

14.

Urea, sodium hydroxide and sodium sulfide were used to treat the cuticle layer of wool before graft copolymerization and amidoximation to enhance the uranium uptaking capacity of amidoximated wool fiber based adsorbent (Wool-g-AOs). The wool-g-AOs were used for recovery of U(VI) from aqueous solutions. The simulated nuclear industry effluent was used for investigating the selectivity and industrial applicability of Wool-g-AOs. The adsorption of uranium(VI) on Wool-g-AOs was pH dependent. The Langmuir model fitted well with the equilibrium data. Kinetic data were fitted well to pseudo second order model.

  相似文献   

15.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

16.
Biochar (BC) has been widely used as a low-cost adsorbent for the removal of contaminants from water and soil. However, the adsorption ability of BC towards heavy metal oxyanions (e.g., Cr(VI)) is relatively low due to the negatively charged surface of BC. In this study, pristine BC was impregnated with Fe3+ to improve its Cr(VI) adsorption capability. Fe3+-impregnated BC (Fe3+-BC) was successfully synthesized by a simple impregnation method and used for the removal of Cr(VI) from aqueous solution. Various factors affecting the adsorption, such as impregnation ratio, pH, adsorbent dosage, contact time, temperature, and the presence of humic acid, were investigated in detail. Results showed that Fe3+-BC had strong adsorption ability to Cr(VI) with a maximum adsorption capacity of 197.80 mg/g, which were not only significantly higher than that of the pristine BC, but also were superior to many previously reported adsorbents. It was favorable for Cr(VI) adsorption under the condition of acidic and high temperature. The adsorption data obeyed Sips and Langmuir isotherms and the kinetic data were well described by the pseudo-first-order kinetic model. The results herein revealed that the Fe3+-impregnated BC had a good potential as a highly efficient material for adsorption of Cr(VI) from aqueous solution.  相似文献   

17.
Activated palm kernel shell carbon (APKSC) was used to remove U(VI) from aqueous solutions in a batch system. The adsorption kinetics, isotherms, and effects of various parameters, such as temperature, contact time, solution pH, adsorbent dosage, and initial U(VI) concentration on the U(VI) adsorption process were studied. Equilibrium was reached after 120 min in the range of studied U(VI) concentrations and temperatures. U(VI) uptake was insignificantly affected by temperature, but was highly pH dependent, and the optimum pH for removal was 5.5. U(VI) removal efficiency increased with the increasing adsorbent dosage. U(VI) sorption capacity increased with increasing initial U(VI) concentration; any further increases in initial U(VI) concentration above a certain point caused insignificant changes in U(VI) sorption capacity. Isotherm data could be described by the Langmuir isotherm model with a maximum U(VI) adsorption capacity of 51.81 mg/g. Kinetic data were fitted to pseudo-first-order and pseudo-second-order equations, which suggested that the U(VI) adsorption onto APKSC was better reproduced by the pseudo-second-order model rather than pseudo-first-order model. Our results indicated that APKSC might be used as a cheap adsorbent in the treatment of uranium-containing wastewater.  相似文献   

18.
The cross-linked chitosan (CS) gels synthesized by using glutaraldehyde (GLA), epichlorohydrin (EC), and ethylene glycol diglycidyl ether (EGDE) as cross-linkers respectively were used to investigate the adsorption of U(VI) ions in an aqueous solution. The pure chitosan (PCS) and the cross-linked chitosan gels were characterized by FTIR and SEM analysis. The kinetic, thermodynamic adsorption and adsorption isotherms of U(VI) ions onto unmodified and modified cross-linked chitosan were studied in a batch adsorption experiments. The effect of pH, contact time and temperature on the adsorption capacity were also carried out. At the optimum pH, the maximum adsorbed amount of PCS, GLACS, ECCS and EGDECS were 483.05, 147.05, 344.83 and 67.56 mg/g, respectively. The uranium (VI) adsorption process of PCS and ECCS followed better with pseudo-second-order kinetic model, while GLACS and EGDECS followed pseudo-first-order kinetic model well. The results obtained from the equilibrium isotherms adsorption studied of U(VI) ions were analyzed in two adsorption models, namely, Langmuir and Freundlich isothms models, the results showed that the Langmuir isotherm had better conformity to the equilibrium data. The thermodynamic parameters such as enthalpy (ΔHo), entropy (ΔSo), and Gibbs free energy (ΔGo) showed that the adsorption process was both spontaneous and endothermic.  相似文献   

19.
Experiments on the removal and recovery of U(VI) from aqueous solution by tea waste were conducted. The adsorbent was characterized by scanning electron microscope and energy dispersive spectrometer before and after the adsorption treatment. The removal of U(VI) amounts to 86.80?% at optimum pH 6. The adsorption process reaches its equilibrium in 12?h at 308?K, and the kinetic characteristic can be described by the pseudo-second-order kinetic equation. The amount of adsorption increases from 22.92 to 142.21?mg?g?1 with the decrease of tea waste dosage from 100 to 10?mg for solution with an initial uranium concentration of 50?mg?L?1. Desorption for the four strippants is higher than 80?%. The equilibrium data are more agreeable with Freundlich isotherm than Langmuir isotherm.  相似文献   

20.
An extremely effortless method was applied for successful synthesis of mesoporous carbonaceous materials(MCMs) using well-ordered mesoporous silica as template. Various characterizations(scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), Raman, X-ray photoelectron spectroscopy(XPS), Brunner-Emmet-Teller(BET) and Zeta potential) confirmed that MCMs had large surface area, uniform pore size distribution, and abundant oxygen-containing functional groups. The batch techniques were employed to study U(VI) adsorption on MCMs under a wide range of experiment conditions. The adsorption kinetics of U(VI) onto MCMs were well-fitted by pseudo-second-order kinetic model, indicating a chemisorption process. The excellent adsorption capacity of MCMs calculated from the Langmuir model was 293.95 mg g~(-1) at pH 4.0. The FT-IR and XPS analyses further evidenced that the binding of U(VI) onto MCMs was ascribed to the plentiful adsorption sites(–OH and –COOH groups) in the internal mesoporous structure, which could efficiently trap guest U(VI) ions. The results presented herein revealed that MCMs were ideal adsorbents in the efficient elimination of uranium or other lanthanides/actinides from aqueous solutions, which would play an important role in environmental pollution management application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号