首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

2.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

3.
4.
The ability of oxygen-rich carbon spheres (CSs) produced by hydrothermal carbonization with the glucose has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of CSs were characterized by FT-IR and SEM. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CSs showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 25 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be ?16.88, 12.09 kJ mol?1 and 197.87 J mol?1 K?1, respectively, which demonstrated the sorption process of CSs towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CSs could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 3.0 g CSs.  相似文献   

5.
The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △(298 K), △ and △ were determined to be ?14.4, 36.1 kJ mol?1 and 169.7 J mol?1 K?1, respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC.  相似文献   

6.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ?(298 K), ? and ? were determined to be ?7.7, 21.5 k J mol?1 and 98.2 J mol?1 K?1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.  相似文献   

7.
8.
Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L?1 of sunflower straw in an initial U (VI) concentration of 20 mg L?1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g?1) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir–Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g?1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent.  相似文献   

9.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

10.
Adsorption of U(VI) from aqueous solution by cross-linked rice straw(CRS) was studied with batch experiments. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR). The effect of contact time, initial pH, temperature, adsorbent amount and initial U(VI) concentration was investigated. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms and two kinetic models of pseudo-first-order and pseudo-second-order were used to describe the adsorption process. The result showed that the adsorption process was highly pH dependent and the favorable initial pH was 5.0. The adsorption process was rapid within first 60 min and equilibrium reached at 100 min. The adsorption process could be well defined by the Langmuir isotherm and pseudo-second-order equation, which indicated that the chemical adsorption was the rate-limiting step. The thermodynamic parameters (?H°, ?S°, ?G°) of the adsorption system were also calculated. The negative value of ?H° and ?G° indicated that the reaction was endothermic and spontaneous in nature. All the above suggested that CRS has considerable potential for the removal of U(VI) from aqueous solution.  相似文献   

11.
Optimization of Parameters for Cr(VI) Adsorption on Used Black Tea Leaves   总被引:1,自引:0,他引:1  
Dynamic characteristics of Cr(VI) sorption on used black tea leaves (UBTLs) as a low-cost adsorbent are studied. Batch experiments were conducted to evaluate the effects of Cr(VI) concentration, solution pH and temperature on the removal process. Both of adsorption and reduction, involved in the process, are affected by the processing parameters. The adsorption kinetics is described successfully using pseudo-second order rate equation and the rate constant decreases with increasing the initial concentration of Cr(VI) up to 150 mg/L (for 0.1 g/L UBTLs) then becomes slow. Experimental and calculated kinetic data for equilibrium are well expressed by Langmuir isotherm. The solution pH has a profound effect on the adsorption rate. The rate constant increases linearly with an increase in temperature, and the low value of activation energy of adsorption, 16.3 kJ/mol, indicates that Cr(VI) is easily adsorbed on UBTLs. The maximum Cr(VI) adsorptive conditions, with a minimum reduction, were achieved from the dynamics of operational parameters: the initial Cr(VI) concentration < 150 mg/L (for 0.1 g/L UBTLs); the initial solution pH = 1.54–2.00 and the processing temperature < 50 C, for the possibility of its practical application.  相似文献   

12.
A novel graphene oxide/bentonite composite (GO/bentonite) was synthesized and then characterized through powder X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy dispersive spectroscopy. Adsorption achieved equilibrium within 10 min. Moreover, U(VI) adsorption on GO/bentonite was highly dependent on solution pH and independent of ionic strength. These characteristics suggested that inner-sphere surface complexes of U(VI) formed on GO/bentonite. The adsorption of U(VI) from aqueous solution on GO/bentonite was fitted to the pseudo-second-order and Freundlich isotherm models. The maximum sorption capacity of GO/bentonite was 234.19 mg g?1 under neutral pH at 303 K. GO/bentonite is a potentially powerful adsorbent for the efficient removal of U(VI) from aqueous solutions.  相似文献   

13.
The removal of orange Telon from aqueous solutions by poly(N-octyl-4-vinylpyridiniumbromide) copolymer was investigated. Batch adsorption experiments were carried out to study the effect of experimental parameters on the orange Telon adsorption equilibrium. The adsorption characteristics of copolymer to ward orange Telon in dilute aqueous solution were followed using UV-Vis spectrophotometry. Adsorption equilibrium was reached within 60 min for 0.03 g of poly(4-vinylpyridine quaternized at 58%. The kinetic of adsorption is best described by a pseudo-second-order model. Results also showed that the equilibrium modeling of orange Telon removal process was described by Langmuir isotherms. The maximum adsorption capacity determined from the Langmuir isotherm was 76.4 mg g? 1. The study of the thermodynamic parameters showed that the adsorption of orange Telon on copolymer is an exothermic process and the randomness decreases at the solid-solution interface during the adsorption of dye on the copolymer.  相似文献   

14.
The ability of hexadecyltrimethylammonium cation pillared bentonite (HDTMA+-bentonite) has been explored for the removal and recovery of uranium from aqueous solutions. The adsorbent was characterized using small-angle X-ray diffraction, high resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The influences of different experimental parameters such as solution pH, initial uranium concentration, contact time, dosage and temperature on adsorption were investigated. The HDTMA+-bentonite exhibited the highest uranium sorption capacity at initial pH of 6.0 and at 80?min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ?? (308?K), ??, and ?? were determined to be ?31.64, ?83.84?kJ/mol, and ?169.49?J/mol/K, respectively, which demonstrated the sorption process of HDTMA+-bentonite towards U(VI) was feasible, spontaneous, and exothermic in nature. The adsorption on HDTMA+-bentonite was more favor than Na-bentonite, in addition the saturated monolayer sorption capacity increased from 65.02 to 106.38?mg/g at 298?K after HDTMA+ pillaring. Complete removal (??100%) of U(VI) from 1.0?L simulated nuclear industry wastewater containing 10.0?mg U(VI) ions was possible with 1.5?g HDTMA+-bentonite.  相似文献   

15.
Fusarium sp. #ZZF51, mangrove endophytic fungus originated from South China Sea coast, was chemically modified by formaldehyde, methanol and acetic acid to enhance its affinity of uranium(VI) from waste water. The influencing factors about uranium(VI) adsorption such as contact time, solution pH, the ratio of solid/liquid (S/L) and initial uranium(VI) concentration were investigated, and the suitable adsorption isotherm and kinetic models were determined. In addition, the biosorption mechanism was also discussed by FTIR analysis. Experimental results show that the maximum biosorption capacity of formaldehyde-treated biomass for uranium(VI) at the optimized condition of pH 6.0, S/L 0.6 and equilibrium time 90 min is 318.04 mg g?1, and those of methanol-treated and HAc-treated biomass are 311.95 and 351.67 mg g?1 at the same pH and S/L values but different equilibrium time of 60 and 90 min, respectively. Thus the maximum biosorption capacity of the three kind of modified biomass have greatly surpassed that of the raw biomass (21.42 mg g?1). The study of kinetic exhibits a high level of compliance with the Lagergren’s pseudo-second-order kinetic models. Langumir and Freundlich models have proved to be well able to explain the sorption equilibrium with the satisfactory correlation coefficients higher than 0.96. FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. #ZZF51 play an important role in uranium(VI) biosorption process.  相似文献   

16.
A modified SBA-15 mesoporous silica was developed, as an adsorbent, for the removal of Cr(VI) ions from natural-water samples. The effects of experimental parameters, including pH of solution, sample and eluent flow rate, the eluent composition, the eluent volume, and the effect of coexisting ions on the separation and determination of Cr(VI), were investigated. It was shown that Cr(VI) was selectively adsorbed from aqueous solution at pH 3, but Cr(III) could be adsorbed from solution at alkaline pH range. The retained Cr(VI) was eluted with 0.5?mol?L?1 KCl solution in 0.1?mol?L?1 Na2CO3 subsequently. Under the optimum conditions, the modified mesoporous silica (py-SBA-15) with a high pore diameter exhibited an adsorption capacity of 136?mg?g?1 and a lower limit of detection than 2.3?µg?L?1 by using diphenylcarbazide as a chromophorous reagent for the determination of Cr(VI) ions. A preconcentration factor as high as 200 was calculated for Cr(VI). The loaded py-SBA-15 can be reactivated with recovery of more than 98.5% over at least eight cycles. The relative standard deviation (RSD) for Cr(VI) ion recovery was less than 1.8%. Validation of the outlined method was performed by analysing a certified reference material (BCR 544). The proposed method was applied to determine Cr(VI) value in natural and waste water samples successfully.  相似文献   

17.
The novel phosphorus-rich hydrothermal carbon spheres (HCSs–PO4) have been synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. The textural and surface chemistry properties were characterized using Boehm titrations, scanning electron microscopy and Fourier transform infrared spectrometer. The content of oxygen-containing functional groups on the surface of HCSs increased from 0.053 to 1.009 mmol g?1 by phosphate group modification. The adsorption ability of HCSs–PO4 has been explored for the removal of uranium from aqueous solutions. The adsorption kinetic data were best described by the pseudo-second-order equation. Adsorption process could be well defined by the Langmuir isotherm, the adsorption capacity of HCSs increased from 80.00 to 285.70 mg g?1 after phosphate group modification. And thermodynamic parameters indicated the adsorption process was feasible,endothermic and spontaneous. Selective adsorption studies showed that the HCSs–PO4 could selectively remove U(VI), and the selectivity coefficients had been improved in the presence of co-existing ions, Na(I), Ni(II), Sr(II), Mn(II), Mg(II) and Zn(II). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 12.0 g HCSs–PO4.  相似文献   

18.
The appearance of chromium in the aqueous effluent is a major concern for the modern industry. In this work, Mesorhizobium amorphae strain CCNWGS0123 was investigated as a biosorbent to remove chromium from aqueous solutions. The optimum pH for Cr(III) and Cr(VI) biosorption were 4 and 2, respectively. This isolate showed an experimental maximum Cr(III) adsorption capacity of 53.52 mg?L?1, while the result was 47.67 mg?L?1 for Cr(VI), with an initial 100 mg?L?1 Cr ions and 1.0 g?L?1 biomass. In terms of time equilibrium, Cr(III) ion was more readily adsorbed than Cr(VI) by this isolate. The biosorption data of both ions fit the Langmuir isotherm better than that of Freundlich model. Meanwhile, this organism exhibited a good capability to release Cr ions, with desorption efficiency of 70 % for Cr(III) and 76 % for Cr(VI). Fourier transform infrared spectroscopy analysis showed that –OH, –COO, –NH, amide I, and C=O were involved in Cr(III) and Cr(VI) binding. The biosorbent was further characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry, which indicated an accumulation of chromium on the cellular level. In the binary mixtures, the removal ratio of total Cr and Cr(III) increased from pH?2 to 4. The highest removal ratio of the total Cr was observed in the 25/25 mg?L?1 mixture at pH?4. In addition, the removal efficiency of Cr(VI) was closely influenced by Cr(III) in the mixture, decreasing to 23.57 mg?g?1 in the 100/100 mg?L?1 mixture system, due to the competition of Cr(III). The potential usage of the chromium-resistant rhizobium for the remediation of chromium-contaminated effluents has been demonstrated based on the above results.  相似文献   

19.
The present work deals with uranium removal from a nitric acid raffinate (waste) solution using prepared solvent (tri-butyl phosphate, TBP) immobilizing PVC cement (SIC) as a suitable adsorbent. The studied relevant factors affecting uranium adsorption onto SIC adsorbent involved; contact time, solution molarity, initial uranium concentration and temperature. The obtained adsorption isotherm of uranium onto the SIC adsorbent was fitted to Langmuir, Freundlich and Dubinin–Radushkviech (D–R) adsorption models. The results showed that the obtained equilibrium data fitted well the Langmuir isotherm. Additionally, it was found that the adsorption process obeys the pseudo second-order kinetic model. On the other hand, the calculated theoretical capacity of our prepared SIC adsorbent reached about 17 g U/kg SIC. Uranium adsorption from the studied raffinate solution was carried out applying the attained optimum conditions. The obtained data showed that 58.4 mg U/5 g SIC were adsorbed. However, using of 2 M HNO3 solution as an eluent, 93 (54.3 mg U) from the adsorbed amount were eluted.  相似文献   

20.

Adsorption isotherms of U(VI) and Th(IV) in water were obtained and removal kinetics was studied. The main functional groups on the surface of Salvadora Persica branches adsorbent were identified using a Fourier-transform infrared and the surface morphology of adsorbent was characterized by a Scanning Electron Microscope. Effects of the U(VI) and Th(IV) initial concentrations, contact time, the mass of adsorbent loading, pH of the solution were investigated at 25?±?0.3 °C. The efficiencies with which this adsorbent removes U(VI) and Th(IV) from their solutions in water are reported. The adsorption isotherm fitted the Freundlich model. The adsorption of U(VI) and Th(IV) follows the pseudo-second order kinetic with squared correlation coefficients (R2) close to 1.0. The thermodynamic parameters (i.e. the free energy (\(\Delta G_{\text{ads}}^{o}\)), the enthalpy (\(\Delta H_{\text{ads}}^{o}\)) and the entropy of adsorption (\(\Delta S_{\text{ads}}^{o}\)) for the adsorption of U(VI) and Th(IV) on the Salvadora Persica branches adsorbent were reported.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号