首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this work,the neutron radiation field at Heavy Ion Research Facility in Lanzhou (HIRFL) was investigated.Total neutron yields,spectra and angular distributions in the bombardment of various thick targets by 12C and 18O ions with energies up to 75 MeV/u were obtained using the activation method.The neutron dose equivalent rates of 60 MeV/u 18O on various thick targets at different angles were measured with a modified A-B remmeter.Our results are compared with those of other reports.  相似文献   

2.
In this work, the neutron radiation field at Heavy Ion Research Facility in Lanzhou (HIRFL) was investigated. Total neutron yields, spectra and angular  相似文献   

3.
The paper presents an overview of the applications of recombination chambers for dosimetric measurements at radiotherapy facilities. The chambers were used at electron, proton and heavy ion accelerators, in the beam and in the vicinity of the accelerators at very different dose rates. The examples of measurements discussed in the paper include: the determination of the absorbed dose and radiation quality parameters of a 170 MeV proton beam and BNCT (boron neutron capture therapy) beam, neutron dose measurements at a phantom surface outside the beam of a 15 MV electron medical accelerator, determination of ambient dose equivalent, H1 (10) outside the irradiated phantom in the proton therapy treatment room at JINR (Dubna, Russia), and at working places outside the shielding of the heavy ion therapy facility at GSI (Darmstadt, Germany).  相似文献   

4.
The contribution of the charged component of secondary cosmic radiation to the ambient dose equivalent H*(10) at ground level is investigated using the muon detector MUDOS and a TEPC detector surrounded by the coincidence detector CACS to identify charged particles. The ambient dose equivalent rate H*(10)T as measured with the TEPC/CACS is used to calibrate the MUDOS count rate in terms of H*(10). First results from long-term measurements at the PTB reference site for ambient radiation dosimetry are reported. The air pressure corrected dose rate shows, as expected, a strong correlation with the neutron count rate as measured with the Kiel neutron monitor. The measured seasonal variations exhibit a negative correlation with the temperature changes in the upper layers of the atmosphere where the ground level muons are produced.  相似文献   

5.
We measured the double differential neutron yield at 0°, 30°, 60° and 90° from 12C5+ induced reactions on thick targets of Ti and Ag at 12 MeV/amu at the Cyclotron at National Institute of Radiological Sciences, Inage, Japan, with 5″ × 5″ proton recoil scintillation detectors BC-501. The measured neutron spectra were unfolded using pulse height unfolding algorithm and energy and angular distribution obtained. Energy distribution of neutron ambient dose equivalent, H*(10) and absorbed dose, D at different angles was determined from double differential neutron spectra using ICRP recommended fluence to dose conversion coefficients.  相似文献   

6.
The results of an investigation into the possibility of applying a device based on a 10B neutron counter (CHM-14) with a polyethylene moderator as the dosimeter of neutron ambient dose equivalent H*(10) in radiation fields of nuclear physics installations at the Joint Institute for Nuclear Research (JINR) are presented. It is shown that the device can be used as the dosimeter of this quantity in the neutron energy range from 0.4 eV to 20 MeV with an error no larger than 30% due to the difference between the energy dependence of its response and the energy dependence of the neutron ambient dose equivalent. Applying the correction coefficients allows one to extend the energy range of neutron dose H*(10) measurement to hundreds MeV. The error due to the anisotropy of the device response does not exceed 35%.  相似文献   

7.
Using the Monte Carlo methods, the spectrum, dose equivalent and ambient dose equivalent of a 239PuBe have been determined at several distances. The spectrum and both doses were determined to 100 cm with a Bonner sphere spectrometer. These quantities were obtained by unfolding the spectrometer count rates using artificial neural networks. The dose equivalent was measured with the area neutron dosemeter Eberline model NRD, to 100, 200 and 300 cm. All the measurements were carried out in an open space to avoid the room-return. With these results, it was found that this source has a yield of 8.41E(6) n/s.  相似文献   

8.
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the ~6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission.  相似文献   

9.
张颂  魏彪  刘易鑫  毛本将  钱易坤  黄宇晨  冯鹏 《强激光与粒子束》2020,32(5):056001-1-056001-7
研究用于校准场所中子剂量监测仪表的241Am-Be中子参考辐射场计量特性。采用蒙特卡罗方法模拟了空气自由中子参考辐射(FRNR),GB/T 14055规定的最小尺寸中子参考辐射(SRNR)和实际中子参考辐射(ARNR)中不同检验点处中子周围剂量当量率、散射中子占比和能谱分布特征。研究结果表明,空气对FRNR中的剂量率和能谱分布影响小,近似为理想中子参考辐射;采用5%含硼聚乙烯作屏蔽的最小尺寸SRNR可减少热中子,降低散射中子占比,影锥法不适用于小尺寸中子参考辐射中对散射中子的修正;ARNR中的散射中子更少、占比更低,影锥法所得散射中子占比与理论值基本一致。  相似文献   

10.
Radiological safety aspects in general and neutron dosimetry in particular, around medium and high-energy particle accelerators pose some unique challenges to the practitioners of radiation protection. This is mainly because the source of radiations are directional, dynamic, pulsed and a mixture of different types. In conventional dosimetry, measurements are done in the units of the quantities in which the radiological protection limits are expressed. In the accelerator environment, measurement of energy and angular distribution of radiations is preferred instead. Research activities being carried out (particularly in India) in the field of neutron dosimetry are discussed. Measurements of neutron ambient dose equivalent directly using conventional rem-meters as well as neutron energy distributions using the time-of-flight technique employing proton recoil scintillators have been done at different directions with respect to light and heavy ion projectiles incident on various thick elemental targets. The observations and conclusions are summarized. Finally, a discussion on the concept of dose and radiological protection and operational quantities is done along with the recommendation of using Evidence theory instead of Bayesian probability in assessing radiological risk.  相似文献   

11.
Target photons mixed in the 144, 250 and 565 keV mono-energetic neutron calibration fields were measured using a cylindrical NaI(Tl) detector with 7.62 cm both in diameter and in length. The ambient dose equivalent H*(10) of the photons was evaluated by applying the “G(E) function” to the measured pulse height spectrum. Neutrons induce photons by nuclear reactions in the NaI(Tl) detector and affect the pulse height spectrum. In order to eliminate the influence of these neutron events, the time-of-flight technique was applied with operating the accelerator in the pulse mode. The ratios by the ambient dose equivalent H*(10) of the photons to the 144, 250 and 565 keV neutrons were evaluated to be 3.3%, 4.7% and 0.9%, respectively. Although high energy photons ranging from 6 to 7 MeV are emitted by the 19F(p,αγ)16O reactions, the dose of the target photons is low enough to calibrate neutron dosemeters except for ones with high sensitivity to the photons.  相似文献   

12.
在碳离子放射治疗中,碳离子束在剂量配送过程中会与束流输运线相互作用,形成以中子辐射为主的外辐射场.由于中子是高LET射线,具有较高的相对生物学效应,减少碳离子放疗中产生的次级中子有助于降低放疗后正常组织并发症几率及二次肿瘤风险.利用蒙特卡罗方法对保守情况(能量为400 MeV/u,多叶光栅完全闭合)下碳离子治疗被动式束...  相似文献   

13.
The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package “complex mixed radiation fields at workplaces” was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.  相似文献   

14.
At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252Cf and 241Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241Am–Be source a photon contribution of approximately 4.9% was determined and for the 252Cf source a contribution of 3.6%.  相似文献   

15.
Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development.  相似文献   

16.
For radiation protection purposes, the neutron dose in carbon ion radiation therapy at the HIRFL (Heavy Ion Research Facility in Lanzhou) was investigated. The neutron dose from primary ^12C ions with a specific energy of 100 MeV/u delivered from SSC was roughly measured with a standard Anderson-Broun rem-meter using a polyethylene target at various distances. The result shows that a maximum neutron dose contribution of 19 mSv in a typically surface tumor treatment was obtained, which is less than 1% of the planed heavy ion dose and is in reasonable agreement with other reports. Also the T-ray dose was measured in this experiment using a thermo luminescent detector.  相似文献   

17.
Monte Carlo (MC) codes for neutron transport calculations such as MCNP, MCNPX, FLUKA, PHITS, and GEANT4, crucially rely on cross sections that describe the interaction of neutrons with nuclei. For neutron energies below 20 MeV, evaluated cross sections are available that are validated against experimental data. In contrast, for high energies (above 20 MeV) experimental data are scarce and, for this reason, every neutron transport code is based on theoretical nuclear models to describe interactions of neutrons with nuclei in matter. Here we report on the calculation of a complete set of response functions for a Bonner spheres spectrometer (BSS), by means of GEANT4 using the Bertini and Binary Intranuclear Cascade (INC) models for energies above 20 MeV. The recent results were compared with those calculated by MCNP/LAHET and MCNP/HADRON MC codes. It turns out that, whatever code used, the response functions were rather similar for neutron energies below 20 MeV, for all 16 detector/moderator combinations of the considered BSS system. For higher energies, however, differences of more than a factor of 2 were observed, depending on neutron energy, detector/moderator combination, MC code, and nuclear model used. These differences are discussed in terms of neutron fluence rates measured at the environmental research station (UFS), “Schneefernerhaus”, (Zugspitze mountain, Germany, 2650 m a.s.l.) for energies below 0.4 eV (thermal neutrons), between 0.4 eV and 100 keV (epithermal neutrons), between 100 keV and 20 MeV (evaporation neutrons), and above 20 MeV (cascade neutrons). In terms of total neutron fluence rates, relative differences of up to 4% were obtained when compared to the standard MCNP/LAHET results, while in terms of total ambient dose equivalent, relative differences of up to 8% were obtained. Both the GEANT4 Binary INC and Bertini INC gave somewhat larger fluence and dose rates in the epithermal region. Most relevant for dose, however, those response functions calculated with the GEANT4 Bertini INC model provided about 18% less neutrons in the cascade region, which led to a roughly 13% smaller contribution of these neutrons to ambient dose equivalent. It is concluded that doses from secondary neutrons from cosmic radiation as deduced from BSS measurements are uncertain by about 10%, simply because of some differences in nuclear models used by various neutron transport codes.  相似文献   

18.
The construction of CSR (cooling storage ring) which includes a main ring (CSRm) and an experimental ring (CSRe) will be finished at the end of 2005. Heavy ions of carbon to uranium will be accelerated up to 900MeV/u and 400MeV/u at intensity of 108 pps. The HIRFL (heavy ion research facility in Lanzhou) will be used as the injector. For the shielding design of CSR, the secondary neutrons due to the ion beam loss, their spectra and angular distributions were estimated based on the experimental results. The dose equivalent outside the shielding surface and in the surrounding environment and the neutron skyshine dose equivalent were also estimated in this study. The experimental result, neutron yield, spectrum and angular distribution for 400MeV/u 12C+Cu reaction were used for estimating the source term of shielding design. It is found that the most important environmental radiation impact component of CSR is the skyshine neutrons.  相似文献   

19.
CSR的辐射防护   总被引:1,自引:0,他引:1  
CSR(cooling storage ring)按计划将于2005年底建成调束,届时从12C到238U的重离子将可以分别被加速到900和400MeV的能量. HIRFL(兰州重离子加速器Heavy Ion Research Facility in Lanzhou)将 用作CSR的注入器. 为了CSR的屏蔽设计,本文利用现有的实验数据计算了由于束流损失产生的中子及其能谱、角分布,同时也估算了屏蔽体外表面的中子剂量、环境中子剂量及天空返照中子剂量. 在源项计算中使用了400MeV/u 12C+Cu反应的中子产额、能谱、角分布的实验数据. 计算表明, CSR对环境剂量影响最大的是天空返照中子.  相似文献   

20.
An intercomparison of the response of different photon and neutron detectors was performed in several measurement positions around a spent fuel cask (type TN 12/2B) filled with 4 MOX and 8 UO2 15 × 15 PWR fuel assemblies at the nuclear power plant Gösgen (KKG) in Switzerland. The instruments used in the study were both active and passive, photon and neutron detectors calibrated either for ambient or personal dose equivalent.The aim of the measurement campaign was to compare the responses of the radiation instruments to routinely used detectors.It has been shown that especially the indications of the neutron detectors are strongly dependent on the neutron spectra around the cask due to their different energy responses. However, routinely used active photon and neutron detectors were shown to be reliable instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号