首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous MCM-41 as Drug Host System   总被引:4,自引:0,他引:4  
Among the large number of applications of mesoporous MCM-41 materials, we have recently developed their new use as drug delivery system. Since this kind of materials consist on a disordered network of siloxane bridges and free silanol groups, these latter could be the reacting sites against appropriate guest chemical species.In this work, this application of mesoporous MCM-41 as drug delivery system has been studied from the host-guest interaction point of view. Two factors could affect that interaction: the structure of pore wall surface, and the functional groups present in the organic molecule. Hence, two approaches have been performed: functionalising pore wall groups and changing the drug.  相似文献   

2.
We have investigated the structural transformation of solid silica spheres into various more complex spherical structures including flower‐like, thick or thin nanosheet‐shelled and porous shelled spheres. In the absence of organic additives, sodium salts contained in this inorganic reaction system apparently direct the silica dissolution and regrowth of dissolved silicate at the nanometer‐scale, leading to the formation of a nanosheet network rather than solid aggregates. Subsequent removal of the salts by simple water washing results in voids in the siloxane network and a significant availability of surface silanol groups so that the resulting nanosheets and spheres composed of them possess large surface areas, pore volumes, and morphological flexibility, which can be varied by an applied stimulus. The results represent a rare example of the transformation of a simple silicate structure into a much more complex spherical structure involving a purely inorganic reaction system.  相似文献   

3.
Noble Gemini surfactants containing a siloxane moiety have been designed and successfully synthesized in the present study and are utilized as structure-directing agents for mesoporous metal oxides such as zirconia, titania, and vanadia. The siloxane moiety is believed to play an important nano-propping role during the surfactant removal by direct calcination, yielding thermally stable mesoporous metal oxides. It is also believed that the synthesis strategy described here can be applied to the synthesis of robust nanostructured materials such as nanoparticles and nanorods in addition to mesoporous materials.  相似文献   

4.
The synthesis and characterization of amino-functionalized mesoporous silica nanoparticles are presented following two different synthetic methods: co-condensation and post-synthesis grafting of 3-aminopropyltriethoxysilane. The amino groups’ distribution on the mesoporous silica nanoparticles was evaluated considering the aggregation state of a grafted photosensitizer (Verteporfin) by using spectroscopic techniques. The homogeneous distribution of amino groups within the silica network is a key factor to avoid aggregation during further organic functionalization and to optimize the performance of functionalized silica nanoparticles in biomedical applications. In addition, the formation of a protein corona on the external surface of both bare and amino-functionalized mesoporous silica was also investigated by adsorbing Bovine Serum Albumin (BSA) as a model protein. The adsorption of BSA was found to be favorable, reducing the aggregation phenomena for both bare and amino-modified nanoparticles. Nevertheless, the dispersant effect of BSA was much more evident in the case of amino-modified nanoparticles, which reached monodispersion after adsorption of the protein, thus suggesting that amino-modified nanoparticles can benefit from protein corona formation for preventing severe aggregation in biological media.  相似文献   

5.
有机-无机杂化氧化硅基介孔材料   总被引:6,自引:0,他引:6  
有机基团可以通过嫁接或共聚的方法引入到氧化硅基介孔材料的孔表面或材料的骨架中,形成表面结合型和桥键型两大类有机-无机杂化氧化硅基介孔材料.本文综述了有机-无机杂化氧化硅基介孔材料的最新研究进展,介绍了其合成方法、应用及潜在的应用领域,详细总结了目前已报道的有机-无机杂化氧化硅基介孔材料的种类,展望了桥键型有机-无机杂化氧化硅基介孔材料的发展及应用前景.  相似文献   

6.
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare‐earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as‐prepared hollow rare‐earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low‐energy‐consuming approach to synthesize highly stable and dispersive gold nanoparticle–yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4‐nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare‐earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk–shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica‐coated nanocomposites.  相似文献   

7.
One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size.  相似文献   

8.
Preparation of mesoporous Fe3O4 (magnetite) hollow spheres has been reported using hydrothermal synthesis and calcinations. The carboxyl-functionalized PS spheres were used as the templates coated by Fe3O4 particles and ethylene glycol (EG) as an organic structure directing agent. PS and EG were removed by calcinations method. The surface area after calcination at 500 degrees C is found to be 74 m(2) g(-1). The hollow spheres exhibited the weak ferromagnetism.  相似文献   

9.
可用于色谱固定相的介孔氧化硅球材料的合成   总被引:6,自引:0,他引:6  
雷杰  余承忠  范杰  闫妍  屠波  赵东元 《化学学报》2005,63(8):739-744
采用非离子型嵌段高分子表面活性剂EO20PO30EO20 (P65)为结构导向剂, 正硅酸乙酯为硅源, 在酸性介质中, 静置法制备了微米级介孔氧化硅球. 通过改变合成温度、反应时间或者无机盐KCl的加入量, 可以调节介孔氧化硅球的直径(9.0~17.6 μm); 加入1,3,5-三甲苯(TMB)或者调节水热温度, 可以调节介孔氧化硅球的孔径(2.3~4.8 nm). 采用X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、激光散射粒度分布和对溶菌酶的吸附等方法, 对介孔氧化硅球的结构、孔性质、形貌、吸附性质等进行了表征. 实验发现, 孔径较小的介孔氧化硅球(≤4.3 nm)对溶菌酶的吸附不明显(≤42 mg/g), 而孔径(4.8 nm)大于溶菌酶直径的材料对溶菌酶有较大的吸附量(192 mg/g), 说明孔径均匀可调的介孔氧化硅球材料可以很好地用作体积排阻色谱柱的固定相.  相似文献   

10.
In this letter, we report a novel method for controlling the light reflection of a colloidal crystal. Highly monodisperse mesoporous silica spheres have been successfully organized into a hexagonally close-packed colloidal crystal film. Just by introducing water vapor into the fabricated colloidal film, the structural color and reflection spectra were changed dramatically because of water vapor adsorption occurring in the mesoporous channels. This phenomenon can be observed reversibly over five cycles. We are convinced that this is the first report on controlling the light reflection of a colloidal crystal film dynamically by taking advantage of adsorption properties inherent to mesoporous silica spheres.  相似文献   

11.
We report important progress made in the synthesis of oriented functional layers of nanochannel materials by using coordination chemistry as a tool. Zeolite L (ZL) crystals have been arranged into oriented layers through the coordinative interactions between a functional organic linker (L) and metal cations used for connecting the different parts. As organic linker we used a terpyridyl ligand bearing a urea group and a reactive siloxane part. Two strategies that lead to monolayers with different properties are described. The first consists of reacting the siloxane group of ligand L with OH groups of the substrate (S), and selectively reacting the siloxane group of L with OH groups located at the base of the ZL crystals. Next, metal cations M(n+), for example, Zn(2+) or Cu(2+), are coordinated to the terpy group on the modified substrate. To this the modified ZL is added and coordinatively bound by the terpy(Mn(n+))terpy interaction, leading to oriented ZL layers. The second method consists of reacting substrate S and ligand L in the presence of a metal cation. A layer with reactive siloxane groups is formed on S to which the ZL crystals are bound by the reaction of the hydroxyl groups of their base. Zn(2+), Cu(2+), and lanthanide ions Eu(3+) and Tb(3+)have been tested successfully, all of them leading to high-quality ZL monolayers with open channels, accessible for accepting guests, oriented perpendicularly with respect to the surface of S.  相似文献   

12.
嵌段共聚物与阳离子表面活性剂混合模板合成介孔SiO_2   总被引:5,自引:0,他引:5  
马玉荣  齐利民  马季铭  程虎民 《化学学报》2003,61(10):1675-1678
利用三嵌段共聚物EO_(20)PO_(70)EO_(20)与阳离子表面活性剂CTAB作为混合 模板合成了内部孔结构与外观形貌同时受到调控的介孔氧化硅。与使用单一共聚物 模板制备的介孔氧化硅相比,在混合模板作用下得到的介孔氧化硅的孔结构有序度 降低,而孔径则随混合模板中共聚物的质量分数的降低而减小。在EO_(20)PO_(70) EO_(20)与CTAB质量比为1:1时可得到形貌完好、表面光滑的介孔氧化硅微米球,其 平均孔径为3.2nm,比表面积为972m~2/g。  相似文献   

13.
Bidimensional hexagonal or centred-rectangular mesoporous zirconia thin films have been reproducibly prepared by evaporation-induced self-assembly (EISA), which are stable up to 300 degrees C, with pore size around 35 A; the films can be post-functionalised with organic ligands presenting different functions, opening a land of opportunities for the design of new hybrid mesostructured materials, based on the synergy of a transition metal oxide network and organic groups.  相似文献   

14.
There are many benefits associated with thermoplastic silicones, but very few examples exist: silicone resins or rubbers are normally thermosets. In this article, a facile and efficient approach was reported to prepare thermoplastic silicone by introducing a bulky side siloxane group. Monofunctional polyhedral oligomeric silsesquioxane (POSS), as the bulky siloxane group, was grafted onto the linear polysiloxane backbone via thiol–ene click reaction, endowing the liquid polysiloxane with thermoplastic nature. The POSS-grafted polysiloxane could be remolded by a hot-melting or solution casting process. It was worth noting that the novel thermoplastic silicone was composed of both linear siloxane main chains and siloxane side groups, which was distinctly different from previous researches on thermoplastic silicones consisted of siloxane main chains and organic side groups. Thermal analysis, rheological characterization and molecular dynamics simulation results revealed the thermoplastic properties of POSS-grafted polysiloxane depended on the bulky POSS's hindrance to the movement of the polymer backbone rather than the interaction between the organic side groups.  相似文献   

15.
Self-organized surfactant solutions, such as microemulsions, vesicular solutions or dispersions, or lyotropic mesophases can serve as templates for the structure directed synthesis of organic polymers. Recent developments of templating within these equilibrium nanostructured fluids are reviewed. Depending on the template structure and the reaction conditions, the outcomes may be polyampholytes, amphiphiles, nanoparticles, hollow spheres, or mesoporous polymers. For each structure and morphology, the final product materials reflect a delicate balance between phase behavior and the reaction and mass transfer parameters that set structure. Experimental and theoretical aspects of reaction kinetics and thermodynamics such as monomer partitioning, swelling behavior and polymerization-induced phase separation are discussed.  相似文献   

16.
In this work, we report the synthesis and characterization of mesoporous ceria with hierarchical nanoarchitectures controlled by amino acids. During the synthesis procedure, cerium oxalate precipitate was treated hydrothermally with different amino acids as crystallization modifiers, and hierarchically structured cerium oxalate precursors were obtained. Ceria can be produced after thermal decomposition of the cerium oxalate precursors. Structure and properties of the product were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, N2 adsorption analysis, and X-ray photoelectron spectroscopy (XPS) methods. The results indicate that the mesoporous ceria with hierarchical nanoarchitectures are composed of nanosized ceria crystallites as building units and possess high surface area and high concentration of oxygen vacancy. Depending on different amino acids as the crystallization modifiers, the ceria exhibit different morphologies, such as dendritic aggregation of rods, dumbbells of nanorod arrays, or aggregated spheres. It is proposed that both the type of functional side groups and the length of the side groups of the amino acids influence the morphologies of the ceria. Meanwhile, the solvent and hydrothermal treatment temperatures also play important roles in the morphological control. The method reported in this work would be regarded as a general way to fabricate mesoporous metal oxides with hierarchical nanoarchitectures.  相似文献   

17.
New mesoporous organic?Cinorganic spheres were prepared by one step co-condensation of trialkoxysilylated camphorsulfonamide (CSA) and 1,2-bis(triethoxysilyl)ethane (BTSE) using octadecyltrimethylammonium chloride (C18TMACl) as template and ethanol as co-solvent in basic medium. The materials have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and elemental analysis (EA). Then the mesoporous organic?Cinorganic spheres were demonstrated to be novel packing materials for potential application in the normal-phase high performance liquid chromatography (HPLC).  相似文献   

18.
Dibenzylidene sorbitol (DBS) is capable of gelling a variety of organic solvents and polymeric materials by forming a rigid, 3-D hydrogen-bonded network. In this work, two poly(siloxane)/poly(propylene oxide) segmented copolymers of equal composition and molecular weight, but different architectures (endblocked vs. pendant), as well as a pure poly(propylene oxide), have been gelled with DBS. We have investigated the dynamic rheological properties of these gels to ascertain the effect of copolymer architecture, PDMS comonomer and DBS concentration on network formation.  相似文献   

19.
The effect of doping by europium triflate on the nanoscopic structure of organic-inorganic hybrid formed by a siliceous network containing pendant amine-terminated propyl chains, called aminosils, was investigated by Small-Angle X-ray Scattering (SAXS). It appears that the composites exhibit a two-level structure. The first level consists of well-condensed cubic-like siloxane octamers, with a radius of gyration around 2 Å. The second level is formed by the aggregation of these siloxane nanodomains to form larger structures, in which the nanodomains are spatially correlated and separated by the organic pendant chains. Europium doping inhibits the aggregation between siloxane octamers, leading to a less compact second-level structure. This can be explained by the Eu3+ coordination close to the external surface of the siloxane nanodomains, as detected by luminescence spectroscopy.  相似文献   

20.
In this work, we report a hydrothermal method for self-assembly and organization of as-synthesized gold nanoparticles into various aggregative morphologies. Using the assembled gold nanoparticles as structural precursors, furthermore, mesoporous gold spheres in either discrete or interconnected form can be prepared at higher process temperatures through removal of bidentate organic linker molecules. Excellent product controllability and high morphological yield have been achieved via tuning preparative parameters. Our preliminary investigations also show that the assembled gold nanoparticles and nanostructures can be used as building blocks for construction of three-dimensional networks as well as for fabrication of two-dimensional porous thin films. The present work confirms our earlier prediction that Ostwald ripening may also be operative for pre-organized organic capped nanocrystallites in producing hollow structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号