首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双束加速器     
本文介绍了在TeV能量区域电子一正电子直线对撞机的进展和双束加速器研究的概况。着重介绍以自由电子激光作微波功率源和用激励加速器作微波功率源的二种双束加速器。  相似文献   

2.
姚乃国 《物理学进展》1992,12(1):83-103
由于实验高能物理对于高能加速器的需要,希望建造能量为Tev数量级的电子、正电子直线对撞机,为此需要建造能量为Tev数量级、加速梯度为100MV/m的电子直线加速器。本文对于这种高梯度电子直线加速器的工作频率和加速结构的选取、新的微波功率源、脉冲功率压缩系统和双束加速器等有关问题作了综合性的介绍。  相似文献   

3.
姚乃国 《物理学进展》2011,12(1):83-103
由于实验高能物理对于高能加速器的需要,希望建造能量为Tev数量级的电子、正电子直线对撞机,为此需要建造能量为Tev数量级、加速梯度为100MV/m的电子直线加速器。本文对于这种高梯度电子直线加速器的工作频率和加速结构的选取、新的微波功率源、脉冲功率压缩系统和双束加速器等有关问题作了综合性的介绍。  相似文献   

4.
BEPCⅡ直线加速器的重大改造旨在获得高流强、小发射度和小能散的正负电子束, 以满足对撞机亮度提高两个两级的要求. 这对直线加速器各系统和束流物理是一个挑战. 文章介绍了直接决定束流性能的新电子源、新正电子源、新微波功率源、相位控制系统和束流测量系统等的改造情况; 叙述了束流物理研究; 介绍了束流调试进展情况和进一步改进计划.  相似文献   

5.
CRRFA-30L波段射频加速器   总被引:11,自引:4,他引:7       下载免费PDF全文
主要介绍CRRFA-30L波段射频加速器结构和性能,论述了热阴极射频腔注入器、束流加速系统、微波功率源和控制等结构中主要技术及其研究进展,给出了加速器输出束流参数测量与测量结果分析,达到设计应用要求。  相似文献   

6.
S波段脉冲大功率速调管D4009是为电子直线加速器研制的微波功率源. 该管工作频率为2856兆赫, 工作电压为250千伏, 工作电流200安培, 脉冲功率大于15兆瓦, 效率大于40%, 增益大于40分贝, 该管已成功地应用于30兆电子伏特的电子直线加速器上, 工作稳定. 图1是该管的照片.  相似文献   

7.
CRRFA-30L波段射频加速器   总被引:1,自引:1,他引:0       下载免费PDF全文
 主要介绍CRRFA-30L波段射频加速器结构和性能,论述了热阴极射频腔注入器、束流加速系统、微波功率源和控制等结构中主要技术及其研究进展,给出了加速器输出束流参数测量与测量结果分析,达到设计应用要求。  相似文献   

8.
 由自由电子激光物理出发,讨论自由电子激光对射频直线加速器微波功率源稳定性的要求,并据此得出国内目前已在运行的两台自由电子激光装置实现稳定运行微波功率源稳定性需达到的指标。  相似文献   

9.
利用北京自由电子激光装置中的微波系统,进行了大功率速调管自激振荡的实验研究.通过调节速调管在振荡模式工作时的反馈回路参数,对速调管自激振荡输出功率、频率和频率稳定性、建立时间等性能进行了测量,实验结果说明大功率速调管振荡工作模式可以满足作为电子直线加速器微波功率源的要求.  相似文献   

10.
中国科学院高能物理研究所建造了一台基于加速器的硼中子俘获治疗(BNCT)实验装置。射频功率源系统为352.2 MHz射频四极加速器(RFQ)提供高频功率,使束流离开RFQ时,其能量达到3.5 MeV。BNCT射频功率源系统主要包括速调管功率源、数字低电平控制系统、射频传输系统。本文介绍了BNCT射频功率源系统,主要包括物理需求、系统组成、关键设备、安装和调试。目前该装置已进行动物实验,加速器打靶束流功率4.3 kW,加速器射频功率源系统运行稳定。  相似文献   

11.
基于临界电子密度的多载波微放电全局阈值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
多载波微放电即发生在宽带、大功率真空无源微波部件中的二次电子倍增放电现象, 是影响空间和加速器应用中无源微波部件长期可靠性的主要隐患. 多载波微放电全局阈值功率的预测对于工作在真空环境中的微波部件至关重要, 但迄今尚无有效方法进行上述阈值的准确分析. 本文将微放电发生过程中二次电子分布区域等效为等离子体, 通过在理论上建立微波部件的电磁特性和电子密度间的对应关系, 提出了一种基于测试系统可检测水平的多载波微放电全局阈值功率分析方法. 为了能够通过蒙特卡罗优化方法得到全局阈值, 进一步基于电子加速的类半正弦等效, 提出了微放电演化过程中电子数涨落的快速计算方法. 基于以上两种方法得到的针对实际微波部件的全局阈值分析结果与实验结果相符合. 不同于传统基于多载波信号功率分析的经验方法, 本文基于临界电子密度判断依据和电子数涨落快速计算, 为多载波微放电全局阈值的准确预测提供了一种高效的分析方法.  相似文献   

12.
介绍了MC55低阻抗强流脉冲电子加速器的结构及主要技术参数,给出了加速器的初步调试结果。该加速器由Marx发生器、10Ω水介质单筒形成线、高压自击穿气体开关、水介质传输线和真空二极管组成。经过初步调试,该加速器可以产生电压500 kV,电流50 kA,脉冲宽度50 ns的强流电子束。目前MC55加速器已应用于同轴虚阴极振荡器高功率微波源的实验研究。  相似文献   

13.
C波段2 MeV驻波加速管物理设计   总被引:1,自引:1,他引:0       下载免费PDF全文
 为了发展结构紧凑、小束斑加速器,进行了C波段驻波电子直线加速器加速管的物理设计和研究。利用多级聚束和大孔径注入方法,抑制空间电荷效应。加速管由3个聚束腔和4个加速腔组成,长约163 mm,馈入微波功率源1 MW。在最终的数值模拟中,得到脉冲电流约150 mA,俘获效率优于30%,在加速管出口外约14 mm处,对电子的横向分布进行非线性Gauss拟合,得到束斑直径(FWHM)约为0.55 mm。  相似文献   

14.
100 MeV电子直线加速器的物理设计   总被引:1,自引:0,他引:1       下载免费PDF全文
 能量为100 MeV左右的高性能电子直线加速器是第三代同步辐射光源注入器和自由电子激光注入器的重要组成部分,采用热阴极栅控电子枪、聚束系统和4根SLAC型加速管作为加速器主体结构,一套45 MW的速调管调制器系统和波导系统作为微波功率源系统。设计中,使用了国际通用的模拟软件对加速器的动力学特性进行了数值模拟和参数优化,电子束能量达到100 MeV以上,能散小于1%,归一化发射度小于30 mm·mrad。  相似文献   

15.
为了补偿由于各种因素引起的微波相位漂移,BEPCII直线加速器需要建立微波相位反馈控制系统.能量最大法将用来确定每台功率源的最佳相位.沿直线加速器速调管长廊铺设相位稳定同轴线提供相位参考.现在已经完成了关键部件,如PAD单元、IfA 单元的开发.搭建了相控最小系统对系统进行了验证.  相似文献   

16.
正磁控管是利用电子在正交电场和磁场中做漂移运动的原理而将电子束能量转换为微波能量的一种真空电子器件。由于磁控管具有体积小重量轻、功率转换效率高、频率调谐能力强、便于永磁包装等优点,因此在雷达与通讯、电子对抗、电子加速器、工农业生产、微波加热、医学等领域具有广泛的应用前景。  相似文献   

17.
C波段全密封加速管研制   总被引:1,自引:1,他引:0       下载免费PDF全文
 介绍了一台1.5MeV的C波段便携式无损电子直线加速器的全密封加速管的设计、微波冷测和研制,热测结果表明该加速管满足加速器的设计要求。  相似文献   

18.
吴洋  许州  徐勇  金晓  常安碧  李正红  黄华  刘忠  罗雄  马乔生  唐传祥 《物理学报》2011,60(4):44102-044102
在器件设计上,针对低功率驱动的高功率微波放大器或高增益放大器中的高次模激励和自激振荡问题,采取了降低电子束同器件前端结构耦合等措施,来保证器件在工作区间完全处于放大状态,通过PIC模拟,设计了低功率驱动的S波段高功率微波放大器(电子束:流强7.5 kA,电子能量750 kV),注入微波6.8 kW时,模拟微波输出功率1.7 GW,增益53.9 dB.在Sinus加速器平台上开展了相应的实验研究: 注入微波62 kW时,微波输出功率达到2.04 GW(电子束:流强8 kA,电子能量800 kV), 输出频率 关键词: 高功率微波 微波器件 高增益 模式控制  相似文献   

19.
上海光源150MeV直线加速器由热阴极电子枪, 次谐波聚束器和聚束器, 四根S波段等梯度行波加速管及必要的磁铁等组成. 外围还有由从微波到直流的电源和功率源, 性能监测和联锁控制的硬件和软件等. 概述了150MeV直线加速器的设计, 安装, 调试和达到的结果.  相似文献   

20.
 对基于短电子束脉冲超辐射机理的X波段相对论返波管进行了优化设计和粒子模拟,结果表明:在超辐射机理作用下,该器件能实现高峰值功率和高功率转换效率的微波辐射。在小型Tesla脉冲源基础上设计了阻抗变换段、二极管、磁场系统等装置,建立了一套小型窄脉冲电子加速器,以此为实验平台在低磁场条件下进行了器件的初步实验研究。在磁场0.73 T、束压约380 kV、束流约4.5 kA、脉宽3.1 ns条件下,实验获得的微波脉冲峰值功率约360 MW,脉宽1.10 ns,上升沿800 ps,频率9.15 GHz,功率转换效率为21%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号