首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction–diffusion equations with initial condition and nonlocal boundary conditions are discussed in this article. A reproducing kernel space is constructed, in which an arbitrary function satisfies the initial condition and nonlocal boundary conditions of the reaction‐diffusion equations. Based on the reproducing kernel space, a new algorithm for solving the reaction–diffusion equations with initial condition and nonlocal boundary conditions is presented. Some examples are displayed to demonstrate the validity and applicability of the proposed method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

2.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
This article deals with the numerical solution to some models described by the system of strongly coupled reaction–diffusion equations with the Neumann boundary value conditions. A linearized three‐level scheme is derived by the method of reduction of order. The uniquely solvability and second‐order convergence in L2‐norm are proved by the energy method. A numerical example is presented to demonstrate the accuracy and efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

4.
非局部初边值条件下的抛物型偏微分方程   总被引:1,自引:1,他引:0  
本文讨论在非局部初边值条件下的抛物型偏微分方程,在更为宽松的边界假设条件下讨论所构造的迭代序列的收敛速度问题.并且对非局部初值条件为离散形式的情况做了相应的讨论.  相似文献   

5.
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.  相似文献   

6.
In this paper, we present a numerical approach to a class of nonlinear reactiondiffusion equations with nonlocal Robin type boundary conditions by finite difference methods. A second-order accurate difference scheme is derived by the method of reduction of order. Moreover, we prove that the scheme is uniquely solvable and convergent with the convergence rate of order two in a discrete L2-norm. A simple numerical example is given to illustrate the efficiency of the proposed method.  相似文献   

7.
In this paper, we present a numerical approach to a class of nonlinear reaction-diffusion equations with nonlocal Robin type boundary conditions by finite difference methods. A second-order accurate difference scheme is derived by the method of reduction of order. Moreover, we prove that the scheme is uniquely solvable and convergent with the convergence rate of order two in a discrete L2-norm. A simple numerical example is given to illustrate the efficiency of the proposed method.  相似文献   

8.
In this article, our main goal is to develop an idea to convert an implicit (3,3) ??-scheme finite difference method to an explicit form for both linear and nonlinear diffusion equations and also for nonlinear advection-diffusion equation with different boundary conditions. Accordingly, we assist power series generating functions which are a routine method in discrete mathematics. Also, the stability analysis of ??–scheme to implement in nonlinear advection–diffusion equation has been investigated. Finally, the new approach has been implemented for Fisher, reaction–diffusion, Burgers and coupled Burgers equations as test problems to verify the ability and efficiency of the method proposed in this paper.  相似文献   

9.
The evolution process of fractional order describes some phenomenon of anomalous diffusion and transport dynamics in complex system. The equation containing fractional derivatives provides a suitable mathematical model for describing such a process. The initial boundary value problem is hard to solve due to the nonlocal property of the fractional order derivative. We consider a final value problem in a bounded domain for fractional evolution process with respect to time, which means to recover the initial state for some slow diffusion process from its present status. For this ill-posed problem, we construct a regularizing solution using quasi-reversible method. The well-posedness of the regularizing solution as well as the convergence property is rigorously analyzed. The advantage of the proposed scheme is that the regularizing solution is of the explicit analytic solution and therefore is easy to be implemented. Numerical examples are presented to show the validity of the proposed scheme.  相似文献   

10.
An iterative product-type triangular skew-symmetric method (PTSM) is used to solve systems of linear algebraic equations (SLAEs) obtained by approximation with a central-difference scheme of a first-type boundary value problem for convection–diffusion–reaction and standard grid ordering. Sufficient conditions for non-negative definiteness of the SLAE matrix resulting from this approximation are obtained for the indefinite reaction coefficient. This property provides convergence of a wide class of iterative methods (in particular, the PTSM). In test problems, agreement of the theory with computational experiments is shown, and a comparison of the PTSM and SSOR is done.  相似文献   

11.
莫嘉琪 《东北数学》2006,22(3):260-264
The singularly perturbed nonlinear nonlocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. By using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied, and by educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are considered.  相似文献   

12.
A class of nonlinear nonlocal singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained; secondly, by using the stretched variable, the composing expansion method and the expanding theory of power series, the initial layer is constructed; and finally, by using the theory of differential inequalities the asymptotic behavior of solutions for initial boundary value problems is studied, and including some relational inequalities the existence and uniqueness of solutions for the original problem and the uniformly valid asymptotic estimation are discussed.  相似文献   

13.
In this paper, we present an efficient numerical algorithm for solving a general class of nonlinear singular boundary value problems. This present algorithm is based on the Adomian decomposition method (ADM) and Green’s function. The method depends on constructing Green’s function before establishing the recursive scheme. In contrast to the existing recursive schemes based on ADM, the proposed numerical algorithm avoids solving a sequence of transcendental equations for the undetermined coefficients. The approximate series solution is calculated in the form of series with easily computable components. Moreover, the convergence analysis and error estimation of the proposed method is given. Furthermore, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The numerical results reveal that the proposed method is very effective.  相似文献   

14.
Fractional (nonlocal) diffusion equations replace the integer-order derivatives in space and time by their fractional-order analogs and they are used to model anomalous diffusion, especially in physics. In this paper, we study a backward problem for an inhomogeneous time-fractional diffusion equation with variable coefficients in a general bounded domain. Such a backward problem is of practically great importance because we often do not know the initial density of substance, but we can observe the density at a positive moment. The backward problem is ill-posed and we propose a regularizing scheme by using Tikhonov regularization method. We also prove the convergence rate for the regularized solution by using an a priori regularization parameter choice rule. Numerical examples illustrate applicability and high accuracy of the proposed method.  相似文献   

15.
We investigate the convergence of an implicit Voronoi finite volume method for reaction–diffusion problems including nonlinear diffusion in two space dimensions. The model allows to handle heterogeneous materials and uses the chemical activities of the involved species as primary variables. The numerical scheme works with boundary conforming Delaunay meshes and preserves positivity and the dissipative property of the continuous system. Starting from a result on the global stability of the scheme (uniform, mesh‐independent global upper, and lower bounds), we prove strong convergence of the chemical activities and their gradients to a weak solution of the continuous problem. To illustrate the preservation of qualitative properties by the numerical scheme, we present a long‐term simulation of the Michaelis–Menten–Henri system. Especially, we investigate the decay properties of the relative free energy over several magnitudes of time, and obtain experimental orders of convergence for this quantity. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 141–174, 2016  相似文献   

16.
In this article, we propose an implicit pseudospectral scheme for nonlinear time fractional reaction–diffusion equations with Neumann boundary conditions, which is based upon Gauss–Lobatto–Legendre–Birkhoff pseudospectral method in space and finite difference method in time. A priori estimate of numerical solution is given firstly. Then the existence of numerical solution is proved by Brouwer fixed point theorem and the uniqueness is obtained. It is proved rigorously that the fully discrete scheme is unconditionally stable and convergent. Furthermore, we develop a modified scheme by adding correction terms for the problem with nonsmooth solutions. Numerical examples are given to verify the theoretical analysis.  相似文献   

17.
An initial boundary value problem of semilinear nonlocal reaction diffusion equations is considered.Under some suitable conditions,using the asymptotic theory,the existence and asymptotic behavior of the interior layer solution to the initial boundary value problem are studied.  相似文献   

18.
We study nonlocal equations from the area of peridynamics, an instance of nonlocal wave equation, and nonlocal diffusion on bounded domains whose governing equations contain a convolution operator based on integrals. We generalize the notion of convolution to accommodate local boundary conditions. On a bounded domain, the classical operator with local boundary conditions has a purely discrete spectrum, and hence, provides a Hilbert basis. We define an abstract convolution operator using this Hilbert basis, thereby automatically satisfying local boundary conditions. The main goal in this paper is twofold: apply the concept of abstract convolution operator to nonlocal problems and carry out a numerical study of the resulting operators. We study the corresponding initial value problems with prominent boundary conditions such as periodic, antiperiodic, Neumann, and Dirichlet. To connect to the standard convolution, we give an integral representation of the abstract convolution operator. For discretization, we use a weak formulation based on a Galerkin projection and use piecewise polynomials on each element which allows discontinuities of the approximate solution at the element borders. We study convergence order of solutions with respect to polynomial order and observe optimal convergence. We depict the solutions for each boundary condition.  相似文献   

19.
This paper deals with the study on system of reaction diffusion differential equations for Robin or mixed type boundary value problems (MBVPs). A cubic spline approximation has been used to obtain the difference scheme for the system of MBVPs, on a piecewise uniform Shishkin mesh defined in the whole domain. It has been shown that our proposed scheme, i.e., central difference approximation for outer region with cubic spline approximation for inner region of boundary layers, leads to almost second order parameter uniform convergence whereas the standard method i.e., the forward-backward approximation for mixed boundary conditions with central difference approximation inside the domain leads to almost first order convergence on Shishkin mesh. Numerical results are provided to show the efficiency and accuracy of these methods.  相似文献   

20.
研究了一类具有边界摄动的非线性非局部反应扩散方程奇摄动Robin初始边值问题.在适当的条件下,首先求出了原问题的外部解,然后利用伸长变量、合成展开法和幂级数展开理论构造出解的初始层项,并由此得到解的形式渐近展开式.最后利用微分不等式理论,讨论了问题解的渐近性态并导出了几个有关的不等式,讨论了原问题解的存在唯一性和解的一致有效的渐近估计式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号