首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以合成的g-C_3N_4纳米片和Ag/TiO_2空心微球为原料,采用机械搅拌的方法构筑了g-C_3N_4/Ag/TiO_2三元复合光催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis DRS)和光致发光光谱(PL)对g-C_3N_4/Ag/TiO_2进行了表征。研究表明,g-C_3N_4/Ag/TiO_2是由Ag/TiO_2微球和g-C_3N_4纳米片复合而成的。与TiO_2相比,其可见光响应范围延长,光生载流子的分离速率加快。在室温下,用降解罗丹明B的反应考察了g-C_3N_4/Ag/TiO_2的可见光催化活性。研究表明,光照180 min时,g-C_3N_4(0.5%)/Ag/TiO_2显示了最高的光催化活性(91.9%),分别是TiO_2和Ag/TiO_2的7.5和1.8倍。光催化活性的提高与合理的异质结构建和Ag的导电性能有关。  相似文献   

2.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

3.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

4.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

5.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

6.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

7.
以凹凸棒石(简称凹土,ATP)为基体,通过原位化学法一步直接合成g-C_3N_4薄层材料,并将其有效固载于凹土表面(ATP/gC_3N_4),再通过原位沉淀法引入不同比例AgFeO_2纳米颗粒,构筑系列兼具磁分离特性和高效光催化活性的ATP/g-C_3N_4-AgFeO_2-Y复合光催化剂(Y=wATP/g-C_3N_4/(wATP/g-C_3N_4+wAg FeO_2)×100%,表示ATP/g-C_3N_4在ATP/g-C_3N_4-AgFeO_2复合材料中所占的质量百分数)。采用XRD、SEM、BET、UV-Vis、PL和ICP表征其结构和物化性能,以酸性红G(ARG)为目标降解物,研究其光催化性能。研究发现:通过形成Si-O-C键,g-C_3N_4薄层被均匀固定在凹土表面;AgFeO_2纳米颗粒均匀沉积于ATP/g-C_3N_4表面并形成Z型异质结,ATP/gC_3N_4-AgFeO_2-Y具有比ATP/g-C_3N_4和AgFeO_2更优异的可见光光催化性能,且随着ATP/g-C_3N_4含量的增大呈先升高而后下降的趋势;当Y=57%时复合材料的性能最佳,ATP/g-C_3N_4-AgFeO_2-57%对20 mg·L-1酸性红G的降解率可达97.4%,循环4次使用后,降解率仍保持94.2%。通过自由基捕获实验研究了光催化反应机理,发现·O2-是光催化过程的主要活性物种。  相似文献   

8.
石墨相氮化碳(g-C_3N_4)是一种在室温条件下最稳定的氮化碳.同时g-C_3N_4的带隙为2.7 eV,可以利用可见光催化很多反应,例如光解水、CO2还原、有机污染物降解和有机物合成.但普通体相g-C_3N_4的光催化性能不尽如人意,主要是由于普通体相材料的载流子复合效率高,可见光(450 nm)利用率低且比表面积小.众所周知,半导体的光催化性能与材料表面状态密切相关,因此可以控制合成条件来制备有利于光催化形貌的g-C_3N_4材料.普通体相g-C_3N_4材料的比表面积较小,约为10 m2/g,导致传质作用较差,光生电子-空穴复合严重,因此制备高比表面积的g-C_3N_4材料是目前研究的热点.我们发现在550 oC下将三聚氰胺和三聚氰酸一起煅烧可以一步热合成g-C_3N_4纳米片,合成温度较低,对材料带隙影响小,同时可以提高材料比表面积,从而极大地提高了材料的光降解苯酚性能.XRD测试发现,随着前驱体中三聚氰酸比例增加,材料的主峰从27.38°显著偏移到27.72°.这表明三嗪环面内相连构成CN平面,同时CN层也会有堆叠最终形成g-C_3N_4材料.通过BET测试,g-C_3N_4纳米片的比表面积为103.24 m2/g.采用AFM分析得到g-C_3N_4纳米片的厚度为3.07 nm.研究了该g-C_3N_4纳米片的光降解性能,结果显示,在可见光照射30 min后,使用这种g-C_3N_4纳米片作为催化剂的条件下,苯酚降解率达到最优的81%.在5次循环利用后,g-C_3N_4(1:9)的降解率还能保持在80%以上,说明材料有良好的循环稳定性.这主要得益于材料的纳米片结构,在对苯酚吸附时不会有很复杂的吸附与脱附过程.同时纳米片结构可为有机污染物的吸附和原位降解提供传质通道.光反应体系中的产物由HPLC检测,分析苯酚的降解产物及产物的产量可以大致推测苯酚可能的降解历程.在三聚氰酸作用下,CN聚合层弯曲,减少了CN层之间的相互结合,同时不会对材料的带隙产生影响.同时整个合成过程无需引发剂,也不会导致CN层的基本单元和连接方式发生改变,同时由于二维片层结构,提高了材料的电荷分离效率.通过苯酚的降解实验得知三聚氰胺与三聚氰酸的比例为1:9,在550 oC下煅烧得到的g-C_3N_4纳米片的光降解性能最优,同时具有很好的催化稳定性  相似文献   

9.
利用水热法以葡萄糖和氮化碳(g-C_3N_4)为原料,成功地制备了炭球修饰氮化碳(C/g-C_3N_4)复合型光催化剂。通过X射线粉末衍射、扫描电镜、N_2吸附-脱附、紫外可见漫反射、表面光电压和电子顺磁共振分别对样品的结构、组成、形貌、比表面积和光学性能进行了表征。结果显示:直径约20 nm的炭球紧密地排列于g-C_3N_4表层,当葡萄糖与g-C_3N_4用量比(质量分数)为1%时,复合催化剂1%C/g-C_3N_4的光催化性能最好。C/g-C_3N_4与单一g-C_3N_4相比,不仅比表面积明显增大,还扩展了可见光的响应范围,且提高了催化剂光生电子与空穴的分离效率。在400 W金卤灯照射下,光线通过420 nm滤光片后,在80 min内1%C/g-C_3N_4对10μmol·L~(-1)的罗丹明B降解率高达87%,是纯g-C_3N_4在同样条件下催化性能的3倍,且稳定性良好。  相似文献   

10.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

11.
为了进一步提高聚合物半导体类石墨相氮化碳(g-C_3N_4)降解有机物的活性,通过简单的水热法复合得到碳化MoS_2/掺硫g-C_3N_4异质结(MoSC/S-CN),并在可见光下研究其罗丹明B(RhB)的降解性能。结果表明,相较于纯g-C_3N_4,最优化的MoSC/S-CN样品对可见光的吸收范围得到明显拓宽,并且在100 min内对RhB的降解效率为92.5%,比纯g-C_3N_Q性能提高68.83%。一系列的结构和光学性质表明,掺硫后再进一步与碳化MoS_2耦合可以协同作用于g-C_3N_4,改善g-C_3N_4的能带结构,加速光生电子空穴对的分离,有效提高光催化活性。  相似文献   

12.
环丙沙星(CIP)的过量使用已经对生态环境造成了很大的威胁。本文设计了一种新型无铁的光电类芬顿体系用于降解水中的CIP。采用溶剂热法合成了Ni O/g-C_3N_4复合材料。通过XRD分析,确定了不同催化剂的晶相和化学组成;红外光谱进一步证实了Ni O/g-C_3N_4复合材料的分子结构,结果表明,成功地合成了Ni O/g-C_3N_4复合材料。利用SEM观察了材料的形貌,结果表明性能最佳的Ni O/g-C_3N_4-60%为二维花状结构。TEM进一步证明Ni O/g-C_3N_4-60%具有片层状结构。由于层状结构,Ni O/g-C_3N_4-60%具有较大的比表面积和丰富的活性位点,有利于电子的传输。XPS分析表明Ni~(2+)和Ni~(3+)共存于Ni O/g-C_3N_4-60%复合材料中并且Ni O/g-C_3N_4-60%具有低配位氧缺陷。EPR谱也证实了氧空位的存在,氧空位不仅促进了H_2O_2的活化,而且有利于金属离子形成稳定的混合价态。UV-Vis-DRS、PL和电化学测试表明Ni O/g-C_3N_4-60%具有最强的光吸收能力、最低的电荷转移电阻和最快的电荷分离效率,有利于活性物质的生成和CIP的快速降解。因此,花状Ni O/g-C_3N_4-60%在光电类芬顿体系中表现出光电协同作用,不仅可以通过Ni~(3+)/Ni~(2+)之间的转化将电芬顿过程中产生的H2O2有效分解为·OH,同时也能够产生光生电子和空穴,促进光照下·OH、·O_2~-和h~+的生成,从而提高环丙沙星的降解效率。以催化性能最佳的Ni O/g-C_3N_4-60%为催化剂时,在90 min内CIP的降解率达到将近100%,120 min时矿化效率达到82.0%,与传统芬顿体系(最佳p H值为2.8–3.5)相比,新型光电类芬顿体系具有较宽的p H范围,当p H值为6时,降解率仍可达78.8%。Ni O/g-C_3N_4-60%在光电类芬顿体系中也表现出良好的结构稳定性,连续5次循环后,降解效率仍保持在96.3%。根据HPLC-MS的结果,提出了CIP降解的两种可能途径。本研究为废水中抗生素的快速降解提供了理论依据。  相似文献   

13.
采用湿化学方法制备了K/Cl掺杂石墨相氮化碳(g-C_(3)N_(4))纳米材料.以三聚氰胺、KCl作为前驱体,经过溶解、沉淀和焙烧过程,使K/Cl元素在g-C_(3)N_(4)结构上均匀分布.K/Cl掺杂的引入并不影响g-C_(3)N_(4)物相的形成,而是使样品的比表面积增加至18.36 m^(2)·g^(-1),是纯g-C_(3)N_(4)的1.7倍.利用光催化降解气态污染物来表征材料的光催化性能,结果表明,全光谱光照下CN-K/Cl-0.07的性能是纯g-C_(3)N_(4)的2.0倍.光催化性能的提升归因于K/Cl双原子掺杂,不但提升了材料的光吸收能力,而且有利于光生电子-空穴的分离.4次循环试验后,CN-K/Cl-0.07光催化降解异丙醇的性能没有明显降低,证明其具有良好的稳定性.K/Cl掺杂g-C_(3)N_(4)光催化活性高且使用性能好,将会在气体污染物降解领域产生广泛的应用.  相似文献   

14.
通过沉积法和离子交换法成功地制备了Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化剂。利用X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸附-脱附等温线、紫外-可见漫反射光谱、荧光光谱等手段对样品进行了表征。通过降解罗丹明B考察其可见光催化活性及稳定性,研究了硫化钠与磷酸银物质的量的比值(n_(Na_2S)/n_(Ag_3PO_4))、g-C_3N_4添加量对所制备复合光催化材料性能的影响,同时对光催化机理进行了探讨。结果表明,随着n_(Na2S)/n_(Ag3PO4)的增加,所得复合催化材料活性先增加后降低;当n_(Na2S)/n_(Ag_3PO_4)为1.5%、g-C_3N_4与Ag_3PO_4的质量比为3∶7时制备的催化剂ASC1.5的光催化活性最好,在可见光照射下,40 min内可将罗丹明B完全降解,且5次循环使用后仍保持较高的催化活性。和Ag_3PO_4相比,Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化材料的活性与稳定性都得到明显提高,这主要归因于复合催化剂比表面积和孔结构的增加,载流子分离效率的提高。光催化机理研究表明,空穴(h~+)、超氧阴离子自由基(·O~(2-))和羟基自由基(·OH)都是光催化过程中的主要活性物种。三者作用大小依次为:h~+·O~(2-)·OH。  相似文献   

15.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

16.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

17.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

18.
以g-C_3N_4和BiVO_4为主要原料,用高温水热法合成出BiVO4/g-C_3N_4复合催化剂。采用X-射线衍射(PXRD)和紫外-可见漫反射吸收光谱(UV-Vis),对复合催化剂BiVO_4/g-C_3N_4的结构进行表征。在可见光下,考察此复合催化剂对亚甲基蓝的降解性能。研究发现,复合催化剂具有g-C_3N_4和BiVO_4结构特征,在X-射线衍射峰上显示出轻微的宽化,质量比为10%的BiVO_4/g-C_3N_4光催化剂降解活性最好,其降解率在360分钟能达到70.6%。  相似文献   

19.
采用高温缩聚尿素和原位沉淀法制备磁性复合g-C_3N_4/Fe-Cu纳米材料,通过X-射线衍射谱(XRD)、高分辨率JEM 1200EX型透射电镜(TEM)和振动样品磁强计(VSM)对材料表面形貌、颗粒形态和结构性质进行表征。考察g-C_3N_4与Fe-Cu不同复合比1∶10、1∶5和1∶1的g-C_3N_4/Fe-Cu对4-硝基苯酚催化降解性能的影响,分析研究催化剂磁性及循环利用性,并初步探讨了降解热力学、动力学过程和降解机理。实验结果表明,此方法合成的g-C_3N_4/Fe-Cu复合材料反应活性位点丰富且分散均匀,表现出较强的催化和可循环性能。当Fe-Cu摩尔比为1∶1,g-C_3N_4与Fe-Cu质量比为1∶5时,表现出最优的活性,对4-硝基苯酚的催化性能最佳,在120 min内降解效率超过82.3%,重复循环利用3次后,降解效率仍能保持在70%以上。降解过程符合准一级动力学模型,反应活化能E_a=17.32 k J·mol~(-1),熵变ΔS0,ΔG0表明降解是个熵驱动的过程,降解反应是自发进行的。  相似文献   

20.
近年来,光催化技术作为一种"绿色"技术,在解决环境问题和能源危机等方面有着广泛的应用.新型可见光响应的半导体光催化材料g-C_3N_4具有二维(2D)纳米片结构,合适的禁带宽度(Eg=2.7 eV),优异的化学稳定性和低廉成本得到广泛的研究.但是,g-C_3N_4光催化剂本身的光生电子-空穴对复合几率高以及可见光响应范围窄等缺点,使其在光催化领域应用中具有一定的局限性.因此,提高g-C_3N_4半导体材料的光催化活性成为近年的研究热点.众所周知,Z型光催化体系的构筑不仅使材料具有较强的氧化还原能力而且有利于其光生电子-空穴的有效分离.但传统Z型光催化体系由于贵金属的引入、复杂的反应体系限制了其在实际领域中的应用.因此,构筑无电子介体的直接Z型光催化体系成为光催化领域的研究热点之一.与块状材料相比,零维(0D)量子点材料具有带隙可调性,可见光和近红外区域的强光收集能力等性能,在光催化领域具有广阔的应用前景.MoS_2量子点具有优异的光学和电子性能,因此,在催化、荧光检测、生物成像领域有重要的应用价值.我们结合水热和微乳溶液法合成了直接Z型g-C_3N_4/MoS_2 QDs(2D/0D)复合光催化材料,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、原子力显微镜(AFM),透射电子显微镜(TEM)以及紫外可见漫反射光谱(UV-vis)等表征方法对该催化剂的结构特征、微观形貌和光学性能进行分析.并研究了g-C_3N_4/MoS_2 QDs复合材料在可见光下的光催化性能.XRD,XPS结果表明,复合材料由g-C_3N_4,MoS_2组成.TEM和高斯分布结果表明,MoS_2 QDs具有良好的分散性,其尺寸小于5 nm,g-C_3N_4纳米片由具有皱纹和不规则折叠结构的薄层组成,在g-C_3N_4/MoS_2 QDs复合材料中可以看到少量的MoS_2量子点沉积在片状g-C_3N_4的表面上.光催化性能测试结果进一步表明,7%MoS_2 QDs/g-C_3N_4在可见光下具有优异的光催化性能:可见光照射12 min内,RhB的降解效率可达100%,降解速率常数是纯g-C_3N_4的8.8倍.为了进一步研究g-C_3N_4/MoS_2异质结光催化剂的光催化机理,用对苯醌、乙二胺四乙酸二钠和丁醇进行了自由基捕捉剂实验.结果表明,超氧自由基在降解有机染料过程中起主要作用,羟基自由基和空穴在增强的光催化性能中发挥相对较小的作用.通过光电流测试、材料价带导带位置计算以及·O_2~-和·OH定量实验结果并结合文献分析认为,MoS_2量子点和g-C_3N_4之间优良的界面接触以及由直接Z型结构产生的光生电荷载体的有效分离使其光催化性能得到显著提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号