首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
正总氮和氨氮是反映水体富营养化程度的重要指标,也是地表水、生活污水和工业废水监测中的常规分析项目。目前,在我国环境监测领域中,水质总氮的测定多采用碱性过硫酸钾消解紫外分光光度法[1],水质氨氮的测定多采用纳氏试剂分光光度法[2]。理论上,同一样品的总氮测定值应大于氨氮测定值,然而在实际的监测工作中发现:氨氮、硝酸盐氮和亚硝酸盐氮的测定总和大于总氮,甚至氨氮的测定值高于总氮测定值。采用不同检测方法进行对  相似文献   

2.
总氮和总磷都是引起水体富营养化的主要原因,是衡量水质的重要指标之一,也是评定湖泊、水库水富营养化的重要指标。生活饮用水中总氮和总磷浓度过高,致使藻类过度繁殖,水体透明度降低,水质甚至恶化至有害的程度,因此准确测定总氮和总磷的含量十分必要[1]。碱性过硫酸钾氧化-紫外分光光度法是测定水中总氮的国家标准方法[2]、钼酸铵分光光度法是测定水中总磷的国家标准方  相似文献   

3.
总氮是水和废水监测的重要指标之一,在水体中有机氮和无机氮化合物含量增加,消耗溶解氧,使水体质量恶化引起的水体富营养化,因此,准确测定水体中总氮的含量十分必要[1]。目前,碱性过硫酸钾氧化-紫外分光光度法(HJ 636-2012)是测定水中总氮的国家标准方法,但是在测定过程中操作繁琐,耗时且在运用国家标准方法测定过程中,往往出现校准曲线线性较差,存在空白值偏高的现象,从而影响测定结果的准确度。出现这些问题的原因主要  相似文献   

4.
<正>地表水中总氮和总磷含量过高,致使藻类过度繁殖,消耗溶解氧,水体透明度降低,水质甚至恶化至有害的程度,因此准确测定水中总氮和总磷的含量十分必要[1]。碱性过硫酸钾氧化-紫外分光光度法是测定水中总氮的国家标准方法、钼酸铵分光光度法是测定水中总磷的国家标准方法,但是在测定过程中操作繁琐,存在空白值偏高的现象从而影响测定结果的准确度[2-4]。文献[5-8]报道用碱性过硫酸钾消解水样,离子色谱法测定总氮和总磷的含量,  相似文献   

5.
测定土壤、肥料中的总氮,目前普遍采用开氏法。这种方法操作相当麻烦、费时,所用试剂量大、种类多,试样在消化过程中有大量SO_2等有毒气体放出。最近,用碱性过硫酸氧化-紫外分光光度法测定水中总氮已引起人们注意,但用这种方法测定土壤、肥料中的总氮还未见报道。我们用现有的设备仪器对不同结合形式(氮-氢,氮-碳,氮-氮,氮-氧以及氮杂环)的十七种含氮化合物进行消化分解试验,结果  相似文献   

6.
湖泊的富营养化问题已引起人们的极大关注,而湖泊底泥中总氮的含量,在一定程度上可以反映出富营养化的状况。底泥中总氮的测定,过去采用分别测定凯氏氮(包括有氮和氨氮),硝酸态氮和亚硝酸态氮,这些方法操作繁琐、费时、耗电、并且试剂用量大;近年来国内外报道了用过硫酸盐氧化,分光光度法测定水中总氮。此法与传统法相比无疑有较大的改进。我们采用了氧化方法,以国产ZIC-1型备有YSP  相似文献   

7.
火焰原子吸收光谱法测定污泥中铜和锌   总被引:13,自引:3,他引:10  
污水处理厂污泥中含有大量有机质 (大于2 0 % ) ,并含有较丰富的氮、磷、钾及微量元素 ,是很好的土壤改良剂和肥料。同时污泥中也含有不少有毒成分 ,污泥中重金属可溶性部分易被农作物吸收 ,造成对农作物的不良影响 ,其危害甚至超过污水[1 ] ,因此掌握了污泥受污染状况 ,就可以做到合理利用剩余污泥。本法将徐州市污水处理厂污泥自然风干 ,筛分制备污泥样品 ,经硝酸消解后 ,进行火焰原子吸收光谱法测定铜和锌 ,方法简便、快速 ,加标回收率大于 95% ,结果满意。1 试验部分1 .1 仪器与试剂350 0 G原子吸收分光光度计 (惠普上海分析仪器厂 )…  相似文献   

8.
水中总氮测定有关问题的探讨   总被引:12,自引:0,他引:12  
大量的生活污水、农田排水或含氮工业废水排入天然水体中中,使水中有机氮和各种无机氮化物的含量增加,生物和微生物大量繁殖,消耗水中的溶解氧,使水体质量恶化。若湖泊、水库中的氮含量超标,会造成浮游植物繁殖旺盛,出现水体富营养化状态。因此,总氮是衡量水质的重要指标之一。  相似文献   

9.
<正>浮游植物中叶绿素a的含量是估算水域初级生产力的一个重要指标,近几十年来,随着水体富营养化问题的日益加剧,精确测定水体中叶绿素a的含量意义重大。目前测定水体中叶绿素a的国家标准方法为分光光度法[1],该方法所用萃取溶剂为丙酮,其萃取效率较差且有毒,操作还较繁琐。对此,科研工作者先后从萃取溶剂[2-3]、提取方法[4-5]和滤膜的选择[6-7]等方面对分光光度法进行了改进,效果显  相似文献   

10.
大量生活污水、农田排水或含氮工业废水排入水体,使水中有机和各种无机含氮化合物含量增加,造成生物和微生物大量繁殖,消耗水中溶解氧使水质恶化.湖泊、水库中含有超标的氮、磷类物质时,造成浮游植物生长旺盛,出现富营养化状态,因此,总氮是衡量水质的重要指标之一.  相似文献   

11.
铜对水生生物毒性很大,尤其游离铜离子的毒性比络合态铜要大得多。水中铜的含量为0.01mg/L时,对水体自净有明显的抑制作用[1]。污水处理厂中的污泥主要进行填埋处理或用于制肥,如果污泥进入水体,当水体中硫酸铜的含量大于0.6mg/L时,就会对水稻等农作物的生长造成极大的危害。污  相似文献   

12.
建立水杨酸钠紫外分光光度法测定烟草中总氮含量的方法。烟草样品经硫酸铜–硫酸钾–浓硫酸消化,用水杨酸钠–二氯异氰尿酸钠显色后用紫外分光光度计检测,并对波长、显色剂用量和反应时间等实验条件进行了优化。总氮的质量浓度在5~60 mg/L范围内与其吸光度呈良好的线性关系,线性相关系数为0.998 8,方法的检出限为0.14 mg/L。样品分析结果的相对标准偏差为3.22%(n=6),样品加标回收率为99.30%~101.62%。该方法具有较高的精密度和准确度,尤其适用于样品量少时对烟草中总氮的测定。  相似文献   

13.
正分光光度法具有较高的灵敏度和准确度,仪器设备简单,操作方便,在化工、医药、冶金、环境监测等领域应用广泛[1]。如邻二氮菲分光光度法测定铁的含量结果准确、灵敏度高、重现性好,在很多领域中已经被列入测定铁的标准方法[2-4],同时在常规的化学分析[5]、实验教学[6]及科学研究中也有很多应用[7-13]。该方法通常使用标准曲线法进行定量分析。标准曲线法虽然准确,但配制标准溶液比较繁  相似文献   

14.
过硫酸盐氧化-紫外分光光度法测定气溶胶中的总氮   总被引:1,自引:0,他引:1  
在120℃~124℃的碱性介质条件下,以过硫酸钾作氧化剂,将气溶胶萃取液中有机氮、NH4 、NO2-转化为NO3-,用紫外分光光度法进行分析。结果表明,溶液中有机氮的浓度在120μmol/L以下时,其回收率为97.1%~101.4%;当浓度为120μmol/L以上时,其回收率随着浓度的增大而降低。试验了共存干扰元素对总氮分析的影响,探讨了气溶胶有机氮的分析精密度与有机氮相对含量的关系。  相似文献   

15.
方熘 《广州化学》2012,37(3):14-17,23
采用碱性过硫酸钾消解―紫外分光光度法对水质中总氮含量进行测定,分析影响总氮测定结果的各种因素。实验结果显示,测定水中总氮过程中,实验所用纯净水、过硫酸钾纯度及碱性溶液存放时间对空白吸光度有明显影响,消解时间和冷却放置时间也会影响测定的空白吸光度和相对误差。在实验确定的最佳条件下对样品进行测定,结果准确可靠。  相似文献   

16.
<正>甲醛是一种无色有刺激性气味的气体,被世界卫生组织(WHO)定为致畸和致癌的物质之一[1]。我国规定室内空气甲醛的限值为0.10 mg·m-3[2]。目前监测环境中甲醛的国家标准测定方法很多[3],常用的有4-氨基-3-联氨-5-巯基-1,2,4-三氮杂茂(Ⅰ)(AHMT)分光光度法[4]、3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物(MBTH)酚试剂分光光度法[5]、乙酰丙酮分光光度法[6]、气相色谱法(GC)[7]、  相似文献   

17.
<正>铁是人体必需的微量元素之一,对人体的代谢和生长发育具有重要的作用。因此准确分析铁含量具有重要意义。目前测定微量铁的方法有火焰原子吸收光谱法[1-2]、荧光法[3-4]和光度法[5-6]等。光度法因具有简便、灵敏、快速、仪器设备价兼等优点被广泛应用。双波长分光光度法测定铁已有报道[7],本工作采用铁(Ⅲ)-邻苯三酚红-十六烷基三甲基溴化铵(CTMAB)体系双波长分光光度法测定铁。1试验部分  相似文献   

18.
采用可见-紫外分光光度法测定了黄芩中总氮和总磷的含量。本法简便,结果准确。  相似文献   

19.
氨氮以游离氨或铵盐形式存在于水中,其主要来源为生活污水中含氮有机物受微生物作用的分解产物,以及某些工业废水和农田排水[1]。氨氮作为水质监测的常规项目,其在地表水、地下水及各类废水中的监测地位极其重要,当氨氮含量超过标准时会导致水质恶化,水质富营养化,鱼类死亡。目前氨氮的测定方法通常有纳氏试剂分光光度法、气相分子吸收光谱法、流动分析光度法、蒸馏-中和滴定法和水杨酸分光光度法[2]等。  相似文献   

20.
以国家标准GB/T 12763.4-2007中的碱性过硫酸钾氧化法和GB/T 11894-1989中淡水总氮测定的紫外分光光度法为基础对海水总氮测定方法进行了改进。在改进的方法中减少了物质转化步骤,相应减少了样品转移次数与定量移取步骤。该方法测定总氮量的线性范围在57.74mg·L-1(以KNO3计)以内。该方法的有机氮物质氧化率为(99.1±5.6)%,加标氧化率为(100.4±4.2)%,以海水样品为基体的加标回收率为(107.3±15.3)%。对海水样品及20,40μmol·L-1硝酸钾标准溶液的测得结果与已知值无显著差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号