首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double insertion of CS2 into two Ru-H bonds of [(dppm)2Ru(H)2] (dppm = Ph2PCH2PPh2) affords the methanedithiolate complex [(dppm)2Ru(eta2-S2CH2)]. The methanedithiolate moiety has been functionalized using 2 equiv of RX resulting in bis(alkylthio)methane derivatives [(dppm)2Ru(RSCH2SR)][X]2. The bis(alkylthio)methane complex loses the bis(alkylthio)methane moiety under very mild conditions and in turn affords the [(dppm)2RuX2] complex from which the starting dihydride [(dppm)2Ru(H)2] has been regenerated via reaction with KOH/EtOH. On the other hand, insertion of CS2 into one Ru-H bond of [(dppe)2Ru(H)2] (dppe = Ph2PCH2CH2PPh2) followed by functionalization using RX results in alkyl dithioformate complex trans-[(dppe)2Ru(H)(SC(SR)H)][X]. In this case also, the alkyl dithioformate moiety gets eliminated under very mild conditions to afford the [(dppe)2Ru(H)(X)] derivative from which the starting dihydride has been regenerated via reaction with NaBH4. The reactions presented here constitute utilization of CS2 as a C1 synthetic source for the generation of useful organic compounds.  相似文献   

2.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

3.
The highly electrophilic, 16-electron, coordinatively unsaturated [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex brings about the heterolytic activation of H(2)(g) and spontaneously generates HOTf. In addition, trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) and an unprecedented example of a phosphorous acid complex, [Ru(P(OH)(3))(dppe)(2)](2+), are formed. The [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex also cleaves the Si-H bond in EtMe(2)SiH in a heterolytic fashion, resulting in the trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) derivative.  相似文献   

4.
Addition of excess carbon disulfide to cis/trans-[(dppm)(2)Ru(H)(2)] results in the methanedithiolate complex [(dppm)(2)Ru(eta(2)-S(2)CH(2))] 4 via the intermediacy of cis-[(dppm)(2)Ru(H)(SC(S)H)] 2. The X-ray crystal structure of this species has been determined.  相似文献   

5.
trans-[(H(2)NCH(2)CH(2)C triple bond N)(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)(N triple bond CCH(2)CH(2)NH(2))][PF(6)](2), 2[PF(6)](2), a derivative of trans-[Cl(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)Cl] functionalized for binding to a silicon substrate, has been prepared and characterized spectroscopically, electrochemically, and with a solid state, single-crystal structure determination. Covalent binding via reaction of one amine group to a boron-doped, smooth Si-Cl substrate is verified by XPS measurements and surface electrochemistry. Vertical orientation is demonstrated by film thickness measurements. Synthesis of the 2[PF(6)](3) mixed-valence complex on the surface is established by electrochemical techniques. Measurement of the ac capacitance of the film at 1 MHz as a function of voltage across the film with a pulse-counter pulse technique demonstrates controlled electric field generation of the two stable mixed-valence forms differing in the spatial location of one electron, that is, switching. As compared to [trans-Ru(dppm)(2)(C triple bond CFc)(NCCH(2)CH(2)NH(2))][PF(6)][Cl], 1[PF(6)][Cl], the magnitude of the capacitance signal per complex observed on switching is shown to increase with increasing distance between the metal centers. Additional experiments on 1[X][Cl] show that the potential for switching 1[X][Cl] increases in the order [X](-) = [SO(3)CF(3)](-) < [PF(6)](-) < [Cl](-). A simple electrostatic model suggests that the smaller is the counterion, the greater is the perturbation of the metal sites and the larger is the barrier for switching.  相似文献   

6.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

7.
The photochemical reaction of Ru(CO)(3)(dppe) and Fe(CO)(3)(dppe)(dppe = Ph(2)PCH(2)CH(2)PPh(2)) with parahydrogen has been studied by in situ-photochemistry resulting in NMR spectra of Ru(CO)(2)(dppe)(H)(2) that show significant enhancement of the hydride resonances while normal signals are seen in Fe(CO)(2)(dppe)(H)(2). This effect is associated with a singlet electronic state for the key intermediate Ru(CO)(2)(dppe) while Fe(CO)(2)(dppe) is a triplet. DFT calculations reveal electronic ground states consistent with this picture. The fluxionality of Ru(CO)(2)(dppe)(H)(2) and Fe(CO)(2)(dppe)(H)(2) has been examined by NMR spectroscopy and rationalised by theoretical methods which show that two pathways for ligand exchange exist. In the first, the phosphorus and carbonyl centres interchange positions while the two hydride ligands are unaffected. A second pathway involving interchange of all three ligand sets was found at slightly higher energy. The H-H distances in the transition states are consistent with metal-bonded dihydrogen ligands. However, no local minimum (intermediate) was found along the rearrangement pathways.  相似文献   

8.
The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit.  相似文献   

9.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

10.
Two methodologies of C-C bond formation to achieve organometallic complexes with 7 or 9 conjugated carbon atoms are described. A C7 annelated trans-[Cl(dppe)2Ru=C=C=C-CH=C(CH2)-C[triple bond]C-Ru(dppe)2Cl][X] (X = PF6, OTf) complex is obtained from the diyne trans-[Cl(dppe)2Ru-(C[triple bond]C)2-R] (R = H, SiMe3) in the presence of [FeCp2][PF6] or HOTf, and C7 or C9 complexes trans-[Cl(dppe)2Ru-(C[triple bond]C)n-C(CH3)=C(R1)-C(R2)=C=C=Ru(dppe)2Cl][X] (n = 1, 2; R1 = Me, Ph, R2 = H, Me; X = BF4, OTf) are formed in the presence of a polyyne trans-[Cl(dppe)2Ru-(C[triple bond]C)n-R] (n = 2, 3; R = H, SiMe3) with a ruthenium allenylidene trans-[Cl(dppe)2Ru=C=C=C(CH2R1)R2][X]. These reactions proceed under mild conditions and involve cumulenic intermediates [M+]=(C=)nCHR (n = 3, 5), including a hexapentaenylidene. A combination of chemical, electrochemical, spectroscopic (UV-vis, IR, NIR, EPR), and theoretical (DFT) techniques is used to show the influence of the nature and conformation of the bridge on the properties of the complexes and to give a picture of the electron delocalization in the reduced and oxidized states. These studies demonstrate that the C7 bridging ligand spanning the metal centers by almost 12 angstroms is implicated in both redox processes and serves as a molecular wire to convey the unpaired electron with no tendency for spin localization on one of the halves of the molecules. The reactivity of the C7 complexes toward protonation and deprotonation led to original bis(acetylides), vinylidene-allenylidene, or carbyne-vinylidene species such as trans-[Cl(dppe)2Ru[triple bond]C-CH=C(CH3)-CH=C(CH3)-HC=C=Ru(dppe)2Cl][BF4]3.  相似文献   

11.
NMR studies reveal that complexes Ru(CO)(2)(H)(2)L(2) (L = PMe(3), PMe(2)Ph, and AsMe(2)Ph) can have three geometries, ccc, cct-L, and cct-CO, with equilibrium ratios that are highly dependent on the electronic properties of L; the cct-L form is favored, because the sigma-only hydride donor is located trans to CO rather than L. When L = PMe(3), the ccc form is only visible when p-H(2) is used to amplify its spectral features. In contrast, when L = AsMe(2)Ph, the ccc and cct-L forms are present in similar quantities and, hence, must have similar free energies; for this complex, however, the cct-CO isomer is also detectable. These complexes undergo a number of dynamic processes. For L(2) = dppe, an interchange of the hydride positions within the ccc form is shown to be accompanied by synchronized CO exchange and interchange of the two phosphorus atoms. This process is believed to involve the formation of a trigonal bipyramidal transition state containing an eta(2)-H(2) ligand; in view of the fact that k(HH)/k(DD) is 1.04 and the synchronized rotation when L(2) = dppe, this transition state must contain little H-H bonding character. Pathways leading to isomer interconversion are suggested to involve related structures containing eta(2)-H(2) ligands. The inverse kinetic isotope effect, k(HH)/k(DD) = 0.5, observed for the reductive elimination of dihydrogen from Ru(CO)(2)(H)(2)dppe suggests that substantial H-H bond formation occurs before the H(2) is actually released from the complex. Evidence for a substantial steric influence on the entropy of activation explains why Ru(CO)(2)(H)(2)dppe undergoes the most rapid hydride exchange. Our studies also indicate that the species [Ru(CO)(2)L(2)], involved in the addition of H(2) to form Ru(CO)(2)(H)(2)L(2), must have singlet electron configurations.  相似文献   

12.
The highly electrophilic, coordinatively unsaturated, 16-electron [Ru(P(OH)3)(dppe)2][OTf]2 (dppe = Ph2PCH2CH2PPh2) complex 1 activates the H-H, the Si-H, and the B-H bonds, in H2(g), EtMe2SiH and Et3SiH, and H3B.L (L = PMe3, PPh3), respectively, in a heterolytic fashion. The heterolysis of H2 involves an eta2-H2 complex (observable at low temperatures), whereas the computations indicate that those of the Si-H and the B-H bonds proceed through unobserved eta1-species. The common ruthenium-containing product in these reactions is trans-[Ru(H)(P(OH)3)(dppe)2][OTf], 2. The [Ru(P(OH)3)(dppe)2][OTf]2 complex is unique with regard to activating the H-H, the Si-H, and the B-H bonds in a heterolytic manner. These reactions and the heterolytic activation of the C-H bond in methane by the model complex [Ru(POH)3)(H2PCH2CH2PH2)2][Cl][OTf], 4, have been investigated using computational methods as well, at the B3LYP/LANL2DZ level. While the model complex activates the H-H, the Si-H, and the B-H bonds in H2, SiH4, and H3B.L (L = PMe3, PPh3), respectively, with a low barrier, activation of the C-H bond in CH4 involves a transition state of 57.5 kcal/mol high in energy. The inability of the ruthenium complex to activate CH4 is due to the undue stretching of the C-H bond needed at the transition state, in comparison to the other substrates.  相似文献   

13.
We describe a number of studies used to establish that parahydrogen can be used to prepare a two-spin system in a pure state, which is suitable for implementing NMR quantum computation. States are generated by pulsed and continuous-wave (CW) UV laser initiation of a chemical reaction between Ru(CO)(3)(L(2)) [where L(2) = dppe = 1,2-bis(diphenylphosphino)ethane or L(2) = dpae = 1,2-bis(diphenylarsino)ethane] with pure parahydrogen (generated at 18 K). This process forms Ru(CO)(2)(dppe)(H)(2) and Ru(CO)(2)(dpae)(H)(2) on a sub-microsecond time-scale. With the pulsed laser, the spin state of the hydride nuclei in Ru(CO)(2)(dppe)(H)(2) has a purity of 89.8 +/- 2.6% (from 12 measurements). To achieve comparable results by cooling would require a temperature of 6.6 mK, which is unmanageable in the liquid state, or an impractical magnetic field of 0.44 MT at room temperature. In the case of CW initiation, reduced state purities are observed due to natural signal relaxation even when a spin-lock is used to prevent dephasing. When Ru(CO)(3)(dpae) and pulsed laser excitation are utilized, the corresponding dihydride product spin state purity was determined as 106 +/- 4% of the theoretical maximum. In other words, the state prepared using Ru(CO)(3)(dpae) as the precursor is indistinguishable from a pure state.  相似文献   

14.
The dynamic behavior in solution of eight mono-hapto?tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2) (H)(η(1) -P(4) )]BF(4) ([1]BF(4) ), trans-[Ru(dppe)(2) (H)(η(1) -P(4) )]BF(4) ([2]BF(4) ), [CpRu(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([3]PF(6) ), [CpOs(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([4]PF(6) ), [Cp*Ru(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([5]PF(6) ), [Cp*Ru(dppe)(η(1) -P(4) )]PF(6) ([6]PF(6) ), [Cp*Fe(dppe)(η(1) -P(4) )]PF(6) ([7]PF(6) ), [(triphos)Re(CO)(2) (η(1) -P(4) )]OTf ([8]OTf), and of three bimetallic Ru(μ,η(1:2) -P(4) )Pt species [{Ru(dppm)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([1-Pt]BF(4) ), [{Ru(dppe)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([2-Pt]BF(4) ), [{CpRu(PPh(3) )(2) )}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([3-Pt]BF(4) ), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5) -C(5) H(5) ; Cp*=η(5) -C(5) Me(5) ] was studied by variable-temperature (VT) NMR and (31) P{(1) H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M?P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31) P?NMR experiments showed that also the binuclear complex cations [1-Pt](+) -[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6) , MAS, (31) P?NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+) , 2(+) , 3(+) , 4(+) , 6(+) , 8(+) in solution, as well as the X-ray structures of 2(+) , 3(+) , 5(+) , 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.  相似文献   

15.
The reaction of CpMo(CO)(dppe)Cl (dppe = Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)2]- gives the molybdenum hydride complex CpMo(CO)(dppe)H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe)H in CH3CN is quasi-reversible, with the peak potential at -0.15 V (vs Fc/Fc+). The reaction of CpMo(CO)(dppe)H with 1 equiv of Ph3C+BF4- in CD3CN gives [CpMo(CO)(dppe)(NCCD3)]+ as the organometallic product, along with dihydrogen and Gomberg's dimer (which is formed by dimerization of Ph3C.). The proposed mechanism involves one-electron oxidation of CpMo(CO)(dppe)H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe)H].+. Proton transfer from [CpMo(CO)(dppe)H].+ to CpMo(CO)(dppe)H, loss of dihydrogen from [CpMo(CO)(dppe)(H)2]+, and oxidation of Cp(CO)(dppe)Mo. by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe)H because of deprotonation of [CpMo(CO)(dppe)H].+ by the amine. Protonation of CpMo(CO)(dppe)H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)2]+OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf).  相似文献   

16.
A detailed structural and thermodynamic study of a series of cobalt-hydride complexes is reported. This includes structural studies of [H(2)Co(dppe)(2)](+), HCo(dppe)(2), [HCo(dppe)(2)(CH(3)CN)](+), and [Co(dppe)(2)(CH(3)CN)](2+), where dppe = bis(diphenylphosphino)ethane. Equilibrium measurements are reported for one hydride- and two proton-transfer reactions. These measurements and the determinations of various electrochemical potentials were used to determine 11 of 12 possible homolytic and heterolytic solution Co-H bond dissociation free energies of [H(2)Co(dppe)(2)](+) and its monohydride derivatives. These values provide a useful framework for understanding observed and potential reactions of these complexes. These reactions include the disproportionation of [HCo(dppe)(2)](+) to form [Co(dppe)(2)](+) and [H(2)Co(dppe)(2)](+), the reaction of [Co(dppe)(2)](+) with H(2), the protonation and deprotonation reactions of the various hydride species, and the relative ability of the hydride complexes to act as hydride donors.  相似文献   

17.
Insertion of CS2 into one of the Ir-H bonds of [Ir(H)5(PCy3)2] takes place to afford the dihydrido dithioformate complex cis-[Ir(H)2(eta2-S2CH)(PCy3)2] accompanied by the elimination of H2. Protonation of the dithioformate complex using HBF4.Et2O gives cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] wherein the H atom undergoes site exchange between the dihydrogen and the hydride ligands. The dynamics was found to be so extremely rapid with respect to the NMR time scale that the barrier to exchange could not be measured. Partial deuteration of the hydride ligands resulted in a J(H,D) of 6.5 and 7.7 Hz for the H2D and the HD2 isotopomers of cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4], respectively. The H-H distance (d(HH)) for this complex has been calculated to be 1.05 A, which can be categorized under the class of elongated dihydrogen complexes. The cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] complex undergoes substitution of the bound H2 moiety with CH(3)CN and CO resulting in new hydride derivatives, cis-[Ir(H)(L)(eta2-S2CH)(PCy3)2][BF4] (L = CH3CN, CO). Reaction of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] with electrophilic reagents such as MeOTf and Me3SiOTf afforded a new hydride aquo complex cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] via the elimination of CH4 and Me3SiH, respectively, followed by the binding of a water molecule (present in trace quantities in the solvent) to the iridium center. The X-ray crystal structures of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] and cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] have been determined.  相似文献   

18.
The irradiation of ruthenium-sulfur dioxide complexes of general formula trans-[Ru(II)(NH(3))(4)(SO(2))X]Y with laser light at low temperature results in linkage isomerization of SO(2), starting with eta(1)-planar S-bound to eta(2)-side S,O-bound SO(2). The solid-state photoreaction proceeds with retention of sample crystallinity. Following work on trans-[Ru(NH(3))(4)Cl(eta(1)-SO(2))]Cl and trans-[Ru(NH(3))(4)(H(2)O)(eta(1)-SO2)](C(6)H(5)SO(3))(2) (Kovalevsky, A. Y.; Bagley, K. A.; Coppens, P. J. Am. Chem. Soc. 2002, 124, 9241-9248), we describe photocrystallographic, IR, DSC, and theoretical studies of trans-[Ru(II)(NH(3))(4)(SO(2))X]Y complexes with (X = Cl(-), H(2)O, or CF(3)COO(-) (TFA(-))) and a number of different counterions (Y = Cl(-), C(6)H(5)SO(3)(-), Tos(-), or TFA(-)). Low temperature IR experiments indicate the frequency of the asymmetric and symmetric stretching vibrations of the Ru-coordinated SO(2) to be downshifted by about 100 and 165 cm(-1), respectively. Variation of the trans-to-SO(2) ligand and the counterion increases the MS2 decay temperature from 230 K (trans-[Ru(II)(NH(3))(4)(SO(2))Cl]Cl) to 276 K (trans-[Ru(II)(NH(3))(4)(SO(2))(H(2)O)](Tos)(2)). The stability of the MS2 state correlates with increasing sigma-donating ability of the trans ligand and the size of the counterion. Quantum chemical DFT calculations indicate the existence of a third eta(1)-O-bound (MS1) isomer, the two metastable states being 0.1-0.6 eV above the energy of the ground-state complex.  相似文献   

19.
Thermolysis of [Ru(PPh(3))(dppe)(CO)HCl] (dppe = 1,2-bis(diphenylphosphino)ethane) with the N-heterocyclic carbenes I(i)Pr(2)Me(2) (1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene), IEt(2)Me(2) (1,3-diethyl-4,5-dimethyl-imidazol-2-ylidene) or ICy (1,3-dicyclohexylimidazol-2-ylidene) gave the cyclometallated carbene complexes [Ru(NHC)'(dppe)(CO)H] (NHC = I(i)Pr(2)Me(2), 4; IEt(2)Me(2), 5; ICy, 6). Dissolution of 4 in CH(2)Cl(2) or CHCl(3) gave the trans-Cl-Ru-P complex [Ru(I(i)Pr(2)Me(2))'(dppe)(CO)Cl] (7), which converted over hours at room temperature to the trans-Cl-Ru-CO isomer 7'. Chloride abstraction from 7 by NaBPh(4) under an atmosphere of H(2) produced the cationic mono-hydride complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)H][BPh(4)] (9), which could also be formed by protonating 4 with 1 eq HBF(4)·OEt(2). Treatment of 4 with excess HBF(4)·OEt(2) followed by extraction into MeCN produced the dicationic acetonitrile complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)(NCMe)(2)][BF(4)](2) (10). The structures of 6, 7, 7' and 10 have been determined by X-ray crystallography.  相似文献   

20.
Three stannaborate complexes of platinum(II) and a novel stannoborate palladium(II) derivative have been prepared in excellent yield. The tin transition metal bond is formed through nucleophilic substitution and the resulting complexes [Bu3MeN] [trans-[(Et3P)2Pt(SnB11H11)H]] (6), [trans-[(Et3P)2Pt(SnB11H11)(CNtBu)]] (7), [Bu3MeN]2[trans-[(Et3P)2Pt(SnB11H11)2-(CNtBu)]] (8), and [Bu3MeN][(dppe)-Pd(SnB11H11)Me] (12) (dppe = 1,2-bis-(diphenylphosphanyl)ethane) were characterized by NMR spectroscopy and elemental analysis. In the cases of the zwitterion 7, the pentacoordinated complex 9, the palladium salt 12 and [(triphos)Pt(SnB11H11)] (10) (triphos = 1,1,1-tris(diphenylphosphanylmethyl)ethane), their solid-state structures are determined by X-ray crystal structure analyses. The trans influence of the [SnB11H11] ligand is evaluated from the results of the IR spectroscopy and X-ray crystallographic structures of complexes 6, 7, and 12. The dipole moment of the zwitterion 7 is calculated by density functional theory (DFT) methods. The alignment of the dipole moments of the polar molecules 7 and 12 in the solid state is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号