首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites have been studied in the microwave frequency range.The permeability of Fe50Ni50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy,and can be further enhanced by using a rotational orientation method.The complex permeability can be considered as the superposition of two types of magnetic resonance.The resonance peak at high frequency is attributed to the natural resonance,while the peak at low frequency is attributed to the domain-wall resonance.The simulated results of the microwave reflectivity show that the matching thickness,peak frequency,permeability,and permittivity are closely related to the quarter wavelength matching condition.The Fe50Ni50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band(1-2 GHz).  相似文献   

2.
The amorphous FeCuNbSiB microwires are fabricated by using the melt extraction method and annealed separately at temperatures T = 573, 673, 723 and 773K for 1h. The effect of annealing treatment on the microwave electromagnetic properties of FeCuNbSiB wires/wax composites has been investigated for the first time. It is found that in a frequency range of 0.5--4.0GHz, the complex permittivity, permeability, magnetic and electric loss tangents of FeCuNbSiB wires/wax composites are strongly dependent on the annealing temperature and frequency. For T = 573, 723 and 773K, two resonance peaks are found at frequency f = 1.2 and 3.3GHz. However, for T = 673K, only one resonance peak occurs at f = 3.3GHz. The resonance peak at f = 1.2GHz is believed to be due to the stress-induced anisotropy, while the resonance peak at f = 3.3GHz is attributed to the random anisotropy.  相似文献   

3.
Owing to the novel crystal structure, ε-Co nanoparticles with an average diameter of 12 nm are synthesized and the microwave magnetic properties of the epoxy resin composite with 50voi% ε-Co particles are measured in the frequency range 0.1-7 GHz. The experimental resonance frequency (4.7 GHz) matches well with the values obtained by the theoretical calculation with the Kittel equation and fitting the experimental permeability dispersion curve via the Landan-Lifshitz equation. Hence the resonance peak is attributed to natural resonance mode. This work is believed to be beneficial for further understanding microwave applications of the novel ε-Co nanoparticles.  相似文献   

4.
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton-Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.  相似文献   

5.
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed highpressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton–Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the external static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.  相似文献   

6.
We use the ferromagnetic resonance(FMR)method to study the properties of ferromagnetic thin film,in which external stress anisotropy,fourfold anisotropy and uniaxial anisotropy are considered.The analytical expressions of FMR frequency,linewidth and the imaginary part of magnetic susceptibility are obtained.Our results reveal that the FMR frequency and the imaginary part of magnetic susceptibility are distinctly enhanced,and the frequency linewidth or field linewidth are broadened due to a strong external stress anisotropy field.The hard-axis and easy-axis components of magnetization can be tuned significantly by controlling the intensity and direction of stress and the in-plane uniaxial anisotropy field.  相似文献   

7.
Heusler Co2FeSi films with a uniaxial magnetic anisotropy and high ferromagnetic resonance frequency fr were deposited by an oblique sputtering technique on Ru underlayers with various thicknesses tRufrom 0 nm to 5 nm.It is revealed that the Ru underlayers reduce the grain size of Co2FeSi,dramatically enhance the magnetic anisotropy field HK induced by the internal stress from 242 Oe(1 Oe=79.5775 A·m^-1)to 582 Oe with an increment ratio of 2.4,while a low damping coefficient remains.The result of damping implies that the continuous interface between Ru and Co2FeSi induces a large in-plane anisotropic field without introducing additional external damping.As a result,excellent high-frequency soft magnetic properties with fr up to 6.69 GHz are achieved.  相似文献   

8.
A broadband negative refractive index metamaterial based on a windmill-like structure is proposed, and investigated numerically and experimentally at the microwave frequency range. From the numerical and experimental results, effect media parameters are retrieved, which clearly show that two broad frequency bands exist in which the permittivity and permeability are negative. The two negative bands are from 9.1 GHz to 10.5 GHz and from 12.05 GHz to 14.65 GHz respectively, and the negative bandwidth is 4 GHz. Due to the good bandwidth performance, the metallic cell with double negative property obtained in this paper is suitable for use in the design of multiband or broadband microwave devices.  相似文献   

9.
With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core,carbon-coated nickel Ni(C) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz–18 GHz for paraffin-Ni(C) composites are investigated.The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%,70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches-26.73 d B at 12.7 GHz, and below-10 d B, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.  相似文献   

10.
(Fe65 Co35 )x (MgF2 )1-x films with different metal volume fraction x are fabricated by magnetron sputtering. The results reveal that good soft magnetic properties can be obtained in a very wide x range (0.9 〉 x 〉 0.55) with Hc not exceeding 10 Oe, and high resistivity is also realized for the samples. Especially for the sample with x = 0.75, the coercivity in hard and easy axes is 1.6 Oe and 8.5 Oe, respectively, 4πMs = 14.1 kG and p reaches 1.16 mΩ2.cm. The dependence of complex permeability μ =μ′ - jμ″ on frequency shows that the real part μ′is more than 190 below 2.0 GHz and ferromagnetic resonance frequency fr reaches 2.43 GHz, implying that the film is promising for high frequency applications. High resolution transmission electron micrographs show that the films consists of bcc Fe65 Co35 particles embedded uniformly in an amorphous insulating MgF2 matrix with particle size around a few nanometers. The excellent soft magnetic properties and high frequency properties are ascribed to exchange of coupling among magnetic granules, and the exchange coupling variation in a wide x range (0.9 〉 x 〉 0.55) is studied systematically by △M plots.  相似文献   

11.
陈大明  李元勋  韩莉坤  龙超  张怀武 《中国物理 B》2016,25(6):68403-068403
Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×10~2Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(M_r/M_s) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 10~4T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m~(-1)).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.  相似文献   

12.
The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation.In this study, three Fe film samples with thicknesses of 50 monolayers(ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used.The magnetic anisotropy constant obtained from ferromagnetic resonance(FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy(MCA) at the normal deposition angle with larger Fe thickness.However, the in-plane uniaxial magnetic anisotropy(UMA) is induced by a higher oblique deposition angle and a smaller thickness.Its hard axis lies between the [100] and [010] directions.The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA.Due to MCA, when the magnetic field is weaker than the saturated field,the magnetization direction does not always align with the external field.The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07.Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect(MOKE) and anisotropic magnetoresistance(AMR) systems.Thus, a vector network analyzer ferromagnetic resonance(VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.  相似文献   

13.
This paper investigates the high frequency behaviours and magnetic anisotropy of rapidly solidified FINEMET (Fe73.5Si13.sBgNb3Cul) alloy ribbons annealed in an applied magnetic field. It finds that the ribbons annealed with the applied magnetic field show much higher resonance frequencies and have even higher permeability at higher frequencies than the samples annealed without the magnetic field and the non-annealed ribbons. MSssbauer spectroscopy had been employed to study the spatial distribution of the magnetic moments of five selected FINEMET alloy ribbons in different heat-treated conditions. The results show that an easy plane has been established after annealling in the magnetic field, while for the other ribbons this effect is not significant. Hence, the relationship between magnetic field annealing and high frequency property has been bridged by the bianisotropic theory.  相似文献   

14.
马小明  李志伟  位建强  王涛  李发伸 《中国物理 B》2010,19(9):97401-097401
This paper investigates the high frequency behaviours and magnetic anisotropy of rapidly solidified FINEMET (Fe73.5Si13.5B9Nb3Cu1) alloy ribbons annealed in an applied magnetic field. It finds that the ribbons annealed with the applied magnetic field show much higher resonance frequencies and have even higher permeability at higher frequencies than the samples annealed without the magnetic field and the non-annealed ribbons. Mssbauer spectroscopy had been employed to study the spatial distribution of the magnetic moments of five selected FINEMET alloy ribbons in different heat-treated conditions. The results show that an easy plane has been established after annealling in the magnetic field, while for the other ribbons this effect is not significant. Hence, the relationship between magnetic field annealing and high frequency property has been bridged by the bianisotropic theory.  相似文献   

15.
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.  相似文献   

16.
The Fe–Cu–Nb–Si–B alloy nanocomposite containing two ferromagnetic phases(amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy(HRTEM) images show the coexistence of these two phases. It is found that Fe–Si nanograins are surrounded by the retained amorphous ferromagnetic phase. M¨ossbauer spectroscopy measurements show that the nanophase is the D03-type Fe–Si phase, which is employed to find the atomic fractions of resonant57 Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe–Cu–Nb–Si–B nanocomposite are measured in the frequency range of 0.5 GHz–10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than-10 dB in a frequency band of 1.93 GHz–3.20 GHz.  相似文献   

17.
The experimental results of an overmoded slow-wave high-power microwave generator operated at low magnetic field are presented. The feasibility of low magnetic field operation is investigated both theoretically and experimentally based on the characteristics of the overmoded slow-wave device. The experiments were carried out at the Spark-2 accelerator. Under the condition of guiding magnetic field strength of 0.55 T, diode voltage of 4 74 k V,and beam current of 5.2kA, a microwave was generated with power of 510 MW, mode of TM01, and frequency of 9.54 GHz. The relative half-width of the frequency spectrum is less than 1%, and the beam-to-microwave efficiency is about 21% in our experiments.  相似文献   

18.
李志伟  杨旭  王海波  刘忻  李发伸 《中国物理 B》2009,18(11):4829-4833
Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability.The paper reports a Mo¨ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films.The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition.Vibrating sample magnetometry and Mo¨ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction,whereas the film deposited without external field does not show any in-plane anisotropy.Mo¨ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field.Also,the magnetic moments tend to align in the direction of the applied external magnetic field during deposition,indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.  相似文献   

19.
Well-dispersed Fe3O4 nanoparticles are synthesized via an oxidization method with NANO2 as oxidant. The microwave magnetic properties of the composites are studied with different volume fractions of fe3O4 nanoparticles. It is found that a lower volume fraction corresponds to a higher magnetic resonance frequency. This could be ascribed to the enhancement of exchange interaction with a weakened dipolar interaction when the volume fraction decreases.  相似文献   

20.
A series of FeCoHfO films were fabricated by dc magnetron reactive sputtering at varying partial pressure of oxygen (Po2) from 0 to 11.7%, and the electrical and magnetic properties of films have been studied. It is shown that optimal Fe43.29 Co19.51Hf7.49 O29.71 films with desired properties can be obtained when the films were prepared under Po2= 5.1%. The films show superior properties of low coereivity, Hc ∽5.5 Oe, relatively high saturation magnetization, 47rMs · 18.3 kG, high anisotropy field Hk ∽ 65 Oe, and high electrical resistivity ρ∽ 2675 μΩ·cm. Permeability spectra shows that the natural ferromagnetic resonant frequency is as high as 3.1 GHz. The combined merits of the film make the films taken as an ideal candidate material for high-frequency applications such as noise suppressor. In addition, the effects of the film thickness and annealing treatment on the magnetic properties are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号