首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2–20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350–400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.  相似文献   

2.
Imidazolate-containing {Fe(NO)(2)}(9) molecular squares have been synthesized by oxidative CO displacement from the reduced Fe(CO)(2)(NO)(2) precursor. The structures of complex 1 [(imidazole)Fe(NO)(2)](4), (Ford, Li, et al.; Chem. Commun.2005, 477-479), 2 [(2-isopropylimidazole)Fe(NO)(2)](4), and 3 [(benzimidazole)Fe(NO)(2)](4), as determined by X-ray diffraction analysis, find precise square planes of irons with imidazolates bridging the edges and nitrosyl ligands capping the irons at the corners. The orientation of the imidazolate ligands in each of the complexes results in variations of the overall structures, and molecular recognition features in the available cavities of 1 and 3. Computational studies show multiple low energy structural isomers and confirm that the isomers found in the crystallographic structures arise from intermolecular interactions. EPR and IR spectroscopic studies and electrochemical results suggest that the tetramers remain intact in solution in the presence of weakly coordinating (THF) and noncoordinating (CH(2)Cl(2)) solvents. M?ssbauer spectroscopic data for a set of reference dinitrosyl iron complexes, reduced {Fe(NO)(2)}(10) compounds A ((NHC-iPr)(2)Fe(NO)(2)), and C ((NHC-iPr)(CO)Fe(NO)(2)), and oxidized {Fe(NO)(2)}(9) compounds B ([(NHC-iPr)(2)Fe(NO)(2)][BF(4)]), and D ((NHC-iPr)(SPh)Fe(NO)(2)) (NHC-iPr = 1,3-diisopropylimidazol-2-ylidene) demonstrate distinct differences of the isomer shifts and quadrupole splittings between the oxidized and reduced forms. The reduced compounds have smaller positive isomer shifts as compared to the oxidized compounds ascribed to the greater π-backbonding to the NO ligands. M?ssbauer data for the tetrameric complexes 1-3 demonstrate larger isomer shifts, most comparable to compound D; all four complexes contain cationic {Fe(NO)(2)}(9) units bound to one anionic ligand and one neutral ligand. At room temperature, the paramagnetic, S = (1)/(2) per iron, centers are not coupled.  相似文献   

3.
Scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS) were used to examine the structural transitions and interface dynamics of octanethiol (OT) self-assembled monolayers (SAMs) caused by long-term storage or annealing at an elevated temperature. We found that the structural transitions of OT SAMs from the c(4 x 2) superlattice to the (6 x square root 3) superlattice resulting from long-term storage were caused by both the dynamic movement of the adsorbed sulfur atoms on several adsorption sites of the Au(111) surface and the change of molecular orientation in the ordered layer. Moreover, it was found that the chemical structure of the sulfur headgroups does not change from monomer to dimer by the temporal change of SAMs at room temperature. Contrary to the results of the long-term-stored SAMs, it was found that the annealing process did not modify either the interfacial or chemical structures of the sulfur headgroups or the two-dimensional c(4 x 2) domain structure. Our results will be very useful for a better understanding of the interface dynamics and stability of sulfur atoms in alkanethiol SAMs on Au(111) surfaces.  相似文献   

4.
The synthesis of filled skutterudite compounds (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12), through a solidstate reaction using chloride of Ce or Y,high purity powder of Co, Fe, and Sb as starting materials,was investigated. (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12) (x=0--1.0, y=0--0.15) compounds were obtained at850--1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_12synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction ofCe or Y obtained by Rietveld analysis agrees well with the composition obtained by chemicalanalysis. The lattice constant of (Ce)_y(Fe)_x(Co)_(4x)(Sb)_(12) increases with increasing substitution of Fe at Cosites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermalconductivity of (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12) decreases significantly with an increasing Ce or Y fillingfraction in the voids and with substitution of Fe at Co sites.  相似文献   

5.
We describe a novel approach to synthesize two-dimensional nanocrystalline TiS2 islands on Au111. Ti is deposited by physical vapor deposition at room temperature on AuS-covered Au111 surfaces. Subsequent annealing to temperatures between 670 K and 800 K leads to the formation of single-layer, triangular TiS2 islands. These TiS2 nanocrystallites reflect the structure of bulk TiS2, and are composed of S-Ti-S stacking units with hexagonally close-packed layers of sulfur atoms and titanium occupying the octahedral sites in between. The lattice constant of the hexagonal unit cell is 3.45 A. A superlattice with a repeat distance of 17.3 A results from the coincidence of five TiS2 units with six Au atoms and is observed in scanning tunneling microscopy and low energy electron diffraction. The triangular shape of the islands indicates a preference for one of the two possible edge terminations. The observation of two island orientations rotated by 60 degrees with respect to each other can be attributed to the formation of twin-related TiS2 domains. The population of the two different island orientations changes during annealing at 800 K indicating a thermodynamic preference for one of the possible stacking sequences.  相似文献   

6.
Lanthanide metals react with PhTeTePh and elemental Te in pyridine to give (py)(y)Ln(4)(Te)(TeTe)(2)(TeTeTe(Ph)TeTe)(Te(x)TePh) (Ln = Sm (y = 9; x = 0); Tb, Ho (y = 8, x = 0.1)), and (py)(7)Tm(4)(Te)[(TeTe)(4)TePh](Te(0.6)TePh) clusters. The Sm, Tb, and Ho compounds contain a square array of Ln(III) ions all connected to a central Te(2-) ligand. Two adjacent edges of the square are bridged by ditelluride ligands, with the Ln ion that is eta(2) bound to both of these TeTe ligands also coordinating to a terminal TePh ligand. The other two edges of the square are spanned by ditellurides that both coordinate a TePh ligand that has been displaced from the Ln ion by pyridine, to give the pentaanion (mu-eta(2)-eta(2)-Te(2)Te(Ph)Te(2)).(5-) In the Tm compound, the displaced TePh interacts with all four TeTe units. The compounds are air-, light-, and temperature-sensitive. Upon thermolysis, they decompose to give solid-state TbTe(2-x), HoTe, or TmTe, with elimination of Te and TePh(2).  相似文献   

7.
The Mn atom in the cubic polymorph of CeMnNi(4) appears to be located in an oversized cage-like structure, and anomalously large atomic displacement parameters (ADPs) for the Mn atom indicate that it is a potential "rattler" atom. Here, multitemperature synchrotron powder X-ray diffraction data measured between 110 and 900 K are used to estimate ADPs for the Mn "guest" atom and the "host" structure atoms in cubic CeMnNi(4). The ADPs are subsequently fitted with Debye and Einstein models, giving Θ(D) = 301(2) K for the "host" structure and Θ(E) = 165(2) K for the Mn atom. This is higher than typical Einstein temperatures for rattlers in thermoelectric skutterudites and clathrates (Θ(E) = 50-80 K), indicating that the Mn atom in cubic CeMnNi(4) is more strongly bonded. In order to probe the chemical interactions of the potential Mn rattler atom, atomic Hirshfeld surface (AHS) analysis is carried out and compared with AHS analysis of well-established guest atom rattlers in archetypical skutterudites, MCoSb(3). Surprisingly, the skutterudite rattlers have more deformed AHSs than the Mn atom in cubic CeMnNi(4). This is related to the highly ionic nature of the skutterudite rattlers, which is not taken into account in the neutral spherical atom approach of the AHS. Additionally, visualization of void spaces in the two materials using the procrystal electron density shows that while the Mn atom is tightly fitting in the CeMnNi(4) structure then the La atom in the skutterudite is truly situated in an oversized cage of the host structure. Overall, we conclude that the Mn atom in cubic CeMnNi(4) cannot be coined a rattler.  相似文献   

8.
The binary skutterudite CoP(3) has a large void at the body-centered site of each cubic unit cell and is, therefore, called a nonfilled skutterudite. We investigated its room-temperature compression behavior up to 40.4 GPa in helium and argon using a diamond-anvil cell. High-pressure in situ X-ray diffraction and Raman scattering measurements found no phase transition and a stable cubic structure up to the maximum pressure in both media. A fitting of the present pressure-volume data to the third-order Birch-Murnaghan equation of state yields a zero-pressure bulk modulus K(0) of 147(3) GPa [pressure derivative K(0)' of 4.4(2)] and 171(5) GPa [where K(0)' = 4.2(4)] in helium and argon, respectively. The Gru?neisen parameter was determined to be 1.4 from the Raman scattering measurements. Thus, CoP(3) is stiffer than other binary skutterudites and could therefore be used as a host cage to accommodate large atoms under high pressure without structural collapse.  相似文献   

9.
Skutterudites CoSb(3) with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.  相似文献   

10.
A novel 3D metal-organic coordination polymer Pb(1,4-napdc)(DMF) (1,4-napdc=naphthalene-1,4-dicarboxylate) was synthesized at room temperature using slow vapor diffusion method to grow single crystal that has been analyzed by X-ray diffraction. The crystal belongs to orthorhombic with space group P212121. The unit cell parameters are as fellows: a=0.701 3(2) nm, b=1.407 6(3) nm, c=1.521 5(4) nm, V=1.501 8(6) nm3 and Z=4. In the crystal structure of Pb(1,4-napdc)(DMF), the square grids constructed with paddle-wheel units of Pb(Ⅱ) and 1,4-napdc links stack over each other to generate infinite 3D network, which has square apertures (1.158×1.158 nm2) along the crystallographic a-axis. The thermal stability of compound was investigated by differential scanning calorimetry and thermogravimetric analysis. CCDC: 293617.  相似文献   

11.
New metal complexes with pentagonal-bipyramidal geometry have been synthesized with the chiral, pentadentate bis(oxazoline) ligand (R,R)-1, including the metal ions magnesium(II), iron(II), and cadmium(II). In the solid state, a complete transfer of chirality from the ligand is observed to exclusively yield enantiomerically pure P-helical, isostructural pentagonal bipyramidal complexes, as determined by X-ray analysis of four compounds. This uncommon coordination geometry is likely to be driven by pi-pi-stacking of the terminal phenyl groups of the linear ligands. The complex cations in [Fe((R,R)-1)(H2O)2](ClO4)2 (3), [Cd((R,R)-1)(H2O)2](ClO4)2 (4), and [Mg((R,R)-1)(H2O)2](ClO4)2 (5) are mononuclear with the two apical positions of the pentagonal bipyramide occupied by two water molecules. In contrast, the structure in dinuclear [Cd((R,R)-1)(MeOH)(mu-I)(CdI3)] (2c) can be described as pentagonal-bipyramidal around cadmium with MeOH and distorted-tetrahedral CdI4 (via one bridging iodo ligand) completing the coordination sphere in axial positions. The crystal packing of 3-5 shows a highly ordered orientation of the mononuclear helical cations into one-dimensional chains along the crystallographic axis a, stabilized by intermolecular pi-pi-stacking. In contrast, the dinuclear helices in 2c are tilted relative to one another, and consequently, directed, one-dimensional helicity in the solid state is not observed. Studies using a combination of mass spectrometry and NMR and CD spectroscopy indicate the presence of only one C2-symmetrical, mononuclear species in acetonitrile for each case, suggesting the formation of diastereo- and enantiomerically pure complexes also in the solution state. All compounds exhibit a very characteristic and almost identical CD pattern between 200 nm and 300 nm. This signal can be attributed to the P-helical, pentagonal arrangement of the ligand.  相似文献   

12.
以Sm作为填充原子,用熔融法结合放电等离子快速烧结技术(SPS)制备出了单相的SmyFexCo4-xSb12化合物。Rietveld精确化结果表明:所制备的SmyFexCo4-xSb12化合物具有填充式skutterudite结构,Sm的热振动参量(B)比Sb和Fe/Co的大,说明Sm在SmyFexCo4-xSb12化合物中具有扰动效应。热电性能测试结果表明:随着Sm原子填充分数的增加,SmyFexCo4-xSb12化合物的电导率减小;Seebeck系数增加,在填充分数为0.38时达最大值;热导率减小,在填充分数为0.32时最低。Sm0.32Fe1.47Co2.53Sb12化合物在750K时具有最大热电性能指数ZTmax值为0.68。  相似文献   

13.
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology, where the Phi(Delta) value can be controlled by changing the symmetry of pi conjugated systems without heavy elements, appears useful for preparing novel photosensitizers.  相似文献   

14.
The hydrated sodium salt of the novel and versatile 5-(pyrimidyl)tetrazolato ligand (pmtz(-)), Na(pmtz).H(2)O (1), has been prepared in very mild conditions from 2-cyanopyrimidine and NaN(3). Two coordination polymers [Cd(pmtz)(2)]n (2)and [Cd(pmtz)(micro-Cl)(0.5)(micro-N(3))(0.5)(H(2)O)](n)(3), , have been synthesized from (1)under conventional or hydrothermal conditions, respectively, and fully characterized by single-crystal or powder X-ray diffraction methods. Compounds and consist of mono-dimensional polymeric chains, further stabilized by interchain pi-pi stacking and hydrogen bond interactions. Compound , containing octacoordinated Cd ions of crystallographic D(2) symmetry, exhibits neutral (4, 4) layers formed by square units of the metallacalix[4]arene type in 1,3-alternate conformation. Species , and display intense, room temperature, photoluminescence in the solid state.  相似文献   

15.
By chemically modifying the nucleation burst that generates monodisperse FePt nanocrystals, a mixture of Pt and Fe(x)Pt(1-x) nanoparticles forms during a one-pot reaction that includes a small amount of Cu as a catalyst; size-selective precipitation yields a bi-disperse population of Fe(x)Pt(1-x) nanoparticles, which can assemble into high-quality AB2, AB5, and AB13 superlattice structures.  相似文献   

16.
The title compound Rb(14)(Mg(1-x)In(x))(30) (x = 0.79-0.88) has been obtained from high-temperature reactions of the elements in welded Ta tubes. There is no analogous binary compound without Mg. The crystal structure established by single-crystal X-ray diffraction means (space group P2m (No. 189), Z = 1 and a = b = 10.1593(3) Angstroms, c = 17.783(1) Angstroms for x = 0.851) features two distinct types of anionic layers: isolated pentacapped trigonal prismatic In(11)(7-) clusters and condensed [(Mg(x)In(1-x))(5)In(14)](7-) layers. The latter consists of analogous M(11) (M = Mg/In) fragments that share prismatic edges and are interbridged by trigonal M(3) units. The structure shows substantial differences from related A(15)Tl(27) (A = Rb, Cs) in which the cation A that centers a six-membered ring of Tl(11) fragments is replaced by M(3.) Both linear muffin-tin orbital and extended Hückel calculations are used to analyze the observed phase width and site preferences. We further utilize the results to rationalize the distortion of the M(11) fragment in the condensed layer and also to correlate with electrical properties. An isomorphous phase region (Rb(y)K(1-)(y))(14)(Mg(1-x)In(x))(30) (y = 0.52, 0.66 for x = 0.79) is also formed.  相似文献   

17.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

18.
A thin-layer synthesis technique was used to synthesize bulk amounts of the metastable phase, RuSb(3), a novel compound with the skutterudite structure. The compound crystallized at 350 degrees C and was stable to 525 degrees C. When annealed above 550 degrees C, it decomposed into RuSb(2) and Sb. Rietveld refinement of X-ray diffraction data showed the presence of excess Sb residing in the interstitial site in the skutterudite structure. X-ray diffraction and thermal analysis experiments allowed us to examine the evolution of the sample as a function of annealing and determine the reaction pathway. The activation energy for the crystallization of the compound was determined to be 3 eV/nucleation event, while the activation energy for decomposition was approximately 8 eV.  相似文献   

19.
The synthesis of three libraries of self-assembling hybrid dendrons containing a primary structure based on the sequence (4-3,4-3,5)12G2-CO(2)CH(3) generated from benzyl ether, biphenyl-4-methyl ether, and AB(2) repeat units constructed from (AB)(y)--AB(2) combinations of benzyl ethers, is reported. The structural and retrostructural analysis of their supramolecular dendrimers facilitated the discovery of new architectural principles that lead to the assembly of functional helical pores. The self-assembly of an example of hybrid dendron containing -H, -CO(2)CH(3), -CH(2)OH, -COOH, -COOK, -CONH(2), -CONHCH(3), -CO(2)(CH(2))(2)OCH(3), -(R) and -(S)-CONHCH(CH(3))C(2)H(5) as X-groups at the apex demonstrated that these self-assembling dendrons provide the simplest strategy for the design and synthesis of porous columns containing a diversity of hydrophilic and hydrophobic functional groups in the inner part of the pore. The results reported here expand the scope and limitations of dendrons available for the self-assembly of functional pores that previously were generated mostly from dendritic dipeptides, to simpler architectures based on hybrid dendrons.  相似文献   

20.
High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号