首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suite of 3D NMR experiments for measuring15N–{1H} NOE,15NT1, and15NTvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H–15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.  相似文献   

2.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) of nuclei other than 1H offers a tremendous potential for sensitivity enhancement in liquid state NMR under mild, physiologically relevant conditions. Photo-CIDNP enhancements of 15N magnetization are much larger than those typically observed for 1H. However, the low gyromagnetic ratio of 15N prevents a full fruition of the potential signal-to-noise gains attainable via 15N photo-CIDNP. Here, we propose two novel pulse sequences, EPIC- and CHANCE-HSQC, tailored to overcome the above limitation. EPIC-HSQC exploits the strong 1H polarization and its subsequent transfer to non-equilibrium Nz magnetization prior to 15N photo-CIDNP laser irradiation. CHANCE-HSQC synergistically combines 1H and 15N photo-CIDNP. The above pulse sequences, tested on tryptophan (Trp) and the Trp-containing protein apoHmpH, were found to display up to 2-fold higher sensitivity than the reference NPE-SE-HSQC pulse train (based on simple 15N photo-CIDNP followed by N–H polarization transfer), and up to a ca. 3-fold increase in sensitivity over the corresponding dark pulse schemes (lacking laser irradiation). The observed effects are consistent with the predictions from a theoretical model of photo-CIDNP and prove the potential of 15N and 1H photo-CIDNP in liquid state heteronuclear correlation NMR.  相似文献   

3.
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic–anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N–13C 2D correlation spectroscopy. From the time dependence of the 15N–13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.  相似文献   

4.
A generalized version of the TROSY experiment allows the spin-state selective editing of the four multiplet components of15N–1H cross peaks of amide groups in proteins into four different subspectra, with no penalty in sensitivity. An improvement by in sensitivity results, if only two of the four multiplet components are selected. Use of the experiment for the measurement of1JHNcoupling constants is discussed. A water flip-back version of the experiment is demonstrated with a 45 kDa fragment of15N/2H labeledStaphylococcus aureusgyrase B.  相似文献   

5.
Double-quantum heteronuclear coherence transfer in solids shows a strong spatial dependence when performed in the presence of a magnetic field gradient. This is a direct consequence of the off-resonance sensitivity of the coherence transfer process and represents a new principle for localized NMR spectroscopy of quadrupole nuclei in solids. Since the slice-selective excitation is achieved simultaneously to the cross-polarization, the suggested pulse sequences avoid the use of shaped pulses, the application of which is problematic in solids. In the present work, the localization efficiency of this new slice-selection principle was analyzed in dependence on the experimental parameters for a spin system consisting of abundant spin-1/2 and rare spin-1 nuclei. The resulting slice profiles and the calculated dependences of the slice thickness for the basic coherence transfer procedures are discussed on the example of1H?2H in monodeuterated benzene. The proposed method opens the possibility of volume-selective investigations of the structure and dynamics of materials using the well-established methodology of deuteron-NMR spectroscopy.  相似文献   

6.
By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides.  相似文献   

7.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

8.
A new ligand, N,N,N′,N′-tetramethylethylenediamine, has been used to grow ZnO nanorods on silicon substrates via a two steps approach. A preliminary seeding on silicon substrates has been combined with chemical bath deposition using a Zinc acetate–N,N,N′,N′-tetramethylethylenediamine aqueous solution. The used diamino ligand has been selected as Zn2+ complexing agent and the related hydrolysis generates the reacting ions (Zn2+ and OH) responsible for the ZnO growth. The seed layer has been annealed at low temperature (<200 °C) and the ZnO nanorods have been grown on this ZnO amorphous layer. There is experimental evidence that the ligand concentration (ranging from 5 to 50 mM) strongly affects the alignment of ZnO nanorods on the substrate, their lateral dimension and the related surface density. Length and diameter of ZnO nanorods increase upon increasing the ligand concentration, while the nanorod density decreases. Even more important, it has been demonstrated, as proof of concept, that chemical bath deposition can be usefully combined with colloidal lithography for selective ZnO nanorod deposition. Thus, by patterning the ZnO seeded substrate with polystyrene microsphere colloidal lithography, regular Si hole arrays, spatially defined by hexagonal ZnO nanorods, have been successfully obtained.  相似文献   

9.
Triple-resonance two-dimensional H5(C5C4N)H experiments are described that provide through-bond H5 to imino/amino connectivities in uridines and cytidines in 13C, 15N-labeled RNAs. The experiments employ selective INEPT steps for transferring magnetization from the H5 hydrogens through the intervening C5, C4, and N3/N4 nuclei to the imino/amino hydrogens. The improved sensitivity of these experiments for assignments in a large 43-nucleotide RNA is demonstrated.  相似文献   

10.
Cation binding to the monovalent cation selective channel, gramicidin A, is shown to induce changes in the dipolar and chemical shift observables from uniformly aligned samples. While these changes could be the result of structural or dynamic changes, they are shown to be primarily induced by through-bond polarizability effects when cations are solvated by the carbonyl oxygens of the peptide backbone. Upon cation binding partial charges are changed throughout the peptide plane, inducing large changes in the13C1chemical shifts, smaller changes in the15N chemical shifts, and even smaller effects for the15N–13C1and15N–2H dipolar interactions. These conclusions are substantiated by characterizing the15N chemical shift tensors in the presence and absence of cations in fast-frozen lipid bilayer preparations of gramicidin A.  相似文献   

11.
Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via (1)H/(15)N and then (15)N/(13)C coherence transfers, for (13)C coherence selection are demonstrated on a (15)N/(13)C-labeled N-acetyl-glucosamine (GlcNAc) compound. The (15)N/(13)C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the (13)C{(15)N/(1)H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the (13)C effective rf field is larger than that of the (15)N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.  相似文献   

12.
The potential of heteronuclear MAS NMR spectroscopy for the characterization of 15N chemical shift (CS) tensors in multiply labeled systems has been illustrated, in one of the first studies of this type, by a measurement of the chemical shift tensor magnitude and orientation in the molecular frame for the two 15N sites of uracil. Employing polycrystalline samples of 15N2 and 2-13C,15N2-labeled uracil, we have measured, via 15N–13C REDOR and 15N–1H dipolar-shift experiments, the polar and azimuthal angles (θ, ψ) of orientation of the 15N–13C and 15N–1H dipolar vectors in the 15N CS tensor frame. The (θNC, ψNC) angles are determined to be (92 ± 10°, 100 ± 5°) and (132 ± 3°, 88 ± 10°) for the N1 and N3 sites, respectively. Similarly, (θNH, ψNH) are found to be (15 ± 5°, −80 ± 10°) and (15 ± 5°, 90 ± 10°) for the N1 and N3 sites, respectively. These results obtained based only on MAS NMR measurements have been compared with the data reported in the literature.  相似文献   

13.
N-doped ZnO–SBA-15 materials (denoted as nN–xZnO–SBA-15, where n is number of urea treatments and x is the weight ratio of ZnO/(ZnO+SBA-15)) were successfully synthesized by a two-step procedure. First, xZnO–SBA-15 was prepared by impregnating SBA-15 with Zn(NO3)2, followed by calcinating at 550 °C. In the second step, xZnO–SBA-15 was modified n times by doping nitrogen with the assistance of urea. The resulting nN–xZnO–SBA-15 materials prepared with various numbers of urea treatments were characterized by XRD, TEM, SEM, EDS, N2 adsorption/desorption at 77 K, diffuse reflectance UV–vis, and XPS. The results show that the nN–xZnO–SBA-15 maintains its ordered hexagonal mesostructure and exhibits light absorbance in the visible region. The nN–xZnO–SBA-15 samples were investigated with the photodegradation of methylene blue under visible light, and exhibited significant photocatalytic activity. The kinetics of the reaction obeyed the Langmuir–Hinshelwood model.  相似文献   

14.
High-quality spectra were obtained by implementing pulsed field gradients (PFGs) as part of 1D selective experiments. The use of PFGs for coherence rejection rather than coherence selection ensures that there is no loss of signal and the sensitivity of these experiments is the same as that of their phase-cycled predecessors. The excitation scheme chosen ensures that these experiments are highly resistant to spin–spin relaxation. The following techniques are described: 1D ge-TOCSY, 1D ge-NOESY, 1D ge-TOCSY–TOCSY, 1D ge-NOESY–NOESY, 1D ge-TOCSY–NOESY, and 1D ge-NOESY–TOCSY. Their applications, for the separation of overlapping spin systems, tracing spin-diffusion signals, and extending the transfer of magnetization beyond an individual spin system, are illustrated using oligo- and polysaccharide samples.  相似文献   

15.
Two-dimensional indirectly detected through-space and through-bond 1H{15N} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieved at a MAS rate of 40 kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D 1H{15N} HETCOR spectrum of natural abundance surface species is also reported.  相似文献   

16.
A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium–phosphinosilyl complex to the surface of the RhP-MSN channels was determined by 29Si NMR experiments. The structural assignments of the rhodium–phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation (13C–1H and 31P–1H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.  相似文献   

17.
Triple-resonance NMR experiments are nearly essential for performing backbone assignments of proteins larger than 15 kDa. Our work extends the double constant-time (2CT) evolution scheme to triple-resonance 3D and 4D experiments. The modifications needed to accomplish 2CT evolution in triple resonance experiments are straight forward, are completely general, and consequently, will yield increased resolution for all out-and-back experiments. We expect that the increased resolution of experiments presented here will be useful in the study of larger proteins (>30 kDa) and in the study of highly helical proteins where1HN,15N, and13C dimensions are poorly dispersed.  相似文献   

18.
《光谱学快报》2013,46(5):437-456
Abstract

The structures of new isomeric 2‐alkoxycarbonylalkylthio‐ and 2‐alkoxy‐ carbonylalkylthio‐1‐alkoxycarbonylalkyl‐6‐aminouracils (121) have been established on the basis of the 1H NMR and 13C NMR spectroscopic data. The 1H NMR and 13C NMR spectra of 121 have been fully assigned by a combination of two‐dimensional experiments [heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond correlation (HMBC)]. The 13C NMR spectra have been shown to be able to differentiate between isomers.  相似文献   

19.
The paper describes two-dimensional solid state NMR experiments that use powdered dephased antiphase coherence (γ preparation) to encode chemical shifts in the indirect dimension. Both components of this chemical shift encoded gamma-prepared states can be refocused into inphase coherence by a recoupling element. This helps to achieve sensitivity enhancement in 2D NMR experiments by quadrature detection. The powder dependence of the gamma-prepared states allows for manipulating them by suitable insertion of delays in the recoupling periods. This helps to design experiments that suppress diagonal peaks in 2D spectra, leading to improved resolution. We describe some new phase modulated heteronuclear and homonuclear recoupling pulse sequences that simplify the implementation of the described experiments based on γ prepared states. Recoupling in the heteronuclear spin system is achieved by matching the difference in the amplitude of the sine/cosine modulated phase on the two rf-channels to the spinning frequency while maintaining the same power on the two rf-channels.  相似文献   

20.
A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ψ-torsion angle from a 1H–15N or 1H–13C′ spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a Cα(i) or a 15N peak is site-specifically obtainable in the NMR spectrum of a uniformly 15N/13C-labeled sample system, the ψ- or ?-torsion angle specified by the conformational structure of peptide geometry involving 15N(i)–1Hαi15N(i + 1) or 13C′(i − 1)–1HNi13C′(i) spin system can be identified based on 13Cα- or 15N-detected 1Hα15N or 1HN13C REDOR experiment. This method will conveniently be utilized to identify major secondary motifs, such as α-helix, β-sheet, and β-turn, from a uniformly 15N-/13C-labled peptide sample system. When tested on a 13C-/15N-labeled model system of a three amino acid peptide Gly–[U–13C, 15N]Ala–[U–13C, 15N]Leu, the ψ-angle of alanine obtained experimentally, ψ = −40 ± 30°, agreed reasonably well with the X-ray determined angle, ψ = −39°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号