首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive (13)C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective (13)C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-(13)C]glucose preferentially labels the ends of the side chains, while [2-(13)C]glycerol labels the C(alpha) of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles phi; simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively (13)C labeled protein were performed using (15)N-(13)C 2D correlation spectroscopy. From the time dependence of the (15)N-(13)C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective (13)C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.  相似文献   

2.
Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon–carbon couplings. Linewidths of 16–19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C–13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.  相似文献   

3.
A recently proposed 13C–1H recoupling sequence operative under fast magic-angle spinning (MAS) [K. Takegoshi, T. Terao, Solid State Nucl. Magn. Reson. 13 (1999) 203–212.] is applied to observe 13C–1H and 15N–1H dipolar powder patterns in the 1H–15N–13C–1H system of a peptide bond. Both patterns are correlated by 15N-to-13C cross polarization to observe one- or two-dimensional (1D or 2D) correlation spectra, which can be simulated by using a simple analytical expression to determine the H–N–C–H dihedral angle. The 1D and 2D experiments were applied to N-acetyl[1,2-13C,15N] -valine, and the peptide φ angle was determined with high precision by the 2D experiment to be ±155.0°±1.2°. The positive one is in good agreement with the X-ray value of 154°±5°. The 1D experiment provided the value of φ=±156.0°±0.8°.  相似文献   

4.
Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H–2D (upper coil) and 1H–13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8–1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C-directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.  相似文献   

5.
NMR detection of multiply labeled compounds in biological samples is often used to follow metabolic pathways. Detection of protons bound to13C atoms offers a more sensitive approach than direct13C detection, but generally results in the loss of carbon–carbon coupling information. We have modified an HSQC sequence to refocus the carbon chemical shifts in order to obtain a proton-correlated13C homonuclearJspectrum, which allows us to measure singly and doubly labeled compounds in the same spectrum.  相似文献   

6.
The accurate measurement of small spin–spin coupling constants in macromolecules dissolved in a liquid crystalline phase is important in the context of molecular structure investigation by modern liquid state NMR. A new spin-state-selection filter, DIPSAP, is presented with significantly reduced sensitivity to J-mismatch of the filter delays compared to previously proposed pulse sequences. DIPSAP presents an attractive new approach for the accurate measurement of small spin–spin coupling constants in molecules dissolved in anisotropic solution. Application to the measurement of 15N–13C′ and 1HN13C′ coupling constants in the peptide planes of 13C, 15N labeled proteins demonstrates the high accuracy obtained by a DIPSAP-based experiment.  相似文献   

7.
A suite of 3D NMR experiments for measuring15N–{1H} NOE,15NT1, and15NTvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H–15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.  相似文献   

8.
We describe a method that uses direct 13C-detection for measuring rotating-frame carbonyl (13CO) relaxation rates to describe protein functional dynamics. Key advantages of method include the following: (i) unique access to 13CO groups that lack a scalar-coupled 15N–1H group; (ii) insensitivity to 15N/1H exchange-broadening that can derail 1H-detected 15N and HNCO methods; (iii) avoidance of artifacts caused by incomplete water suppression. We demonstrate the approach for both backbone and side-chain 13CO groups. Accuracy of the 13C-detected results is supported by their agreement with those obtained from established HNCO-based approaches. Critically, we show that the 13C-detection approach provides access to the 13CO groups of functionally important residues that are invisible via 1H-detected HNCO methods because of exchange-broadening. Hence, the 13C-based method fills gaps inherent in canonical 1H-detected relaxation experiments, and thus provides a novel complementary tool for NMR studies of biomolecular flexibility.  相似文献   

9.
Several methods are presented for the selective determination of spin–lattice and spin–spin relaxation rates of backbone protons in labeled proteins. The relaxation rates of amide protons in 15N labeled proteins can be measured by using two-way selective cross-polarization (SCP). The measurement of Hα relaxation rates can be achieved by combining this method with homonuclear Hartmann–Hahn transfer using doubly selective irradiation. Various schemes for selective or nonselective inversion of the longitudinal proton magnetization lead to different initial recovery rates. The methods have been applied to lysine K6 in 15N-labeled human ubiquitin and to leucine L5 in 15N- and 13C-labeled octapeptide YG*G*F*LRRI (GFL) in which the marked residues are 15N- and 13C-labeled.  相似文献   

10.
The complete assignment of the 1H and 13C NMR spectra of benzoylecgonine, a cocaine metabolite, was performed, with the aid of some 2D experiments such as gCOSY and gHSQC.  相似文献   

11.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

12.
A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4′P and 3JH3′P scalar couplings in large 13C-labeled nucleic acids and in DNA–protein complexes. This experiment makes use of the fact that 1H–13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4′P and 3JH3′P are related via Karplus-type functions with the phosphodiester torsion angles β and ε, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein–DNA complex.  相似文献   

13.
Exclusively heteronuclear 13C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor 1H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the 1H resonances unassigned. Here we report two novel 13C-detected NMR experiments which incorporate a 1H chemical shift evolution period followed by 13C-TOCSY mixing for aliphatic 1H resonance assignment without reliance on 1H detection.  相似文献   

14.
The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U-13C]xylose, [U-13C]glucose, and [1-13Cgal]lactose were obtained in 5 h. Sample derivatization with [carbonyl-13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl – carbohydrate ring proton 1H–13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[carbonyl-13C]acetates.  相似文献   

15.
The potential of heteronuclear MAS NMR spectroscopy for the characterization of 15N chemical shift (CS) tensors in multiply labeled systems has been illustrated, in one of the first studies of this type, by a measurement of the chemical shift tensor magnitude and orientation in the molecular frame for the two 15N sites of uracil. Employing polycrystalline samples of 15N2 and 2-13C,15N2-labeled uracil, we have measured, via 15N–13C REDOR and 15N–1H dipolar-shift experiments, the polar and azimuthal angles (θ, ψ) of orientation of the 15N–13C and 15N–1H dipolar vectors in the 15N CS tensor frame. The (θNC, ψNC) angles are determined to be (92 ± 10°, 100 ± 5°) and (132 ± 3°, 88 ± 10°) for the N1 and N3 sites, respectively. Similarly, (θNH, ψNH) are found to be (15 ± 5°, −80 ± 10°) and (15 ± 5°, 90 ± 10°) for the N1 and N3 sites, respectively. These results obtained based only on MAS NMR measurements have been compared with the data reported in the literature.  相似文献   

16.
The Diels-Alder adduct of phencyclone and N-n-butylmaleimide has been prepared, and NMR studies have been carried out in CDCl3 solution at ambient temperatures by one-and two-dimensional 1H NMR (300 MHz) and 13C NMR (75 MHz) techniques. The resulting spectra appear to be consistent with slow rotation about the hindered C(sp2)-C(sp3) bonds to the bridgehead unsubstituted phenyls, i.e., slow exchange limit (SEL) spectra. Full rigorous 1H spectral assignments have been made via high-resolution COSY experiments. The number of signals in the 13C NMR aryl region were also consistent with hindered phenyl rotations; preliminary 13C assignments are given. Striking evidence for magnetic anisotropic effects due to the phenanthrene moiety, bridging ketone carbonyl, and bridgehead phenyls are discussed, supporting endo stereochemical assignment of the adduct.  相似文献   

17.
A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the 1H–1H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH2 or CH3 moiety. Experimental CHHC buildup curves are presented for l-tyrosine·HCl samples where either all or only one in 10 molecules are U–13C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic 1H chemical shifts) is demonstrated for the initial buildup (tmix < 100 μs) of CHHC peak intensity corresponding to an intramolecular close (2.5 Å) H–H proximity. Differences in the initial CHHC buildup are observed between the one in 10 dilute and 100% samples for cases where there is a close intermolecular H–H proximity in addition to a close intramolecular H–H proximity. For the dilute sample, CHHC cross-peak intensities tended to significantly lower values for long mixing times (500 μs) as compared to the 100% sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio Nobs/Ntot between the number of protons that are directly attached to a 13C nucleus and hence contribute significantly to the observed 13C CHHC NMR signal, and the total number of 1H spins into the system. 1H–1H magnetization exchange curves extracted from CHHC spectra for the 100% l-tyrosine·HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast buildup being observed for the shortest intramolecular distances (2.5 Å) and slower, yet observable buildup for the longer intermolecular distances (up to 5 Å).  相似文献   

18.
[5-13C,15N]Glutamine, with 1J(13C–15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20–35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.  相似文献   

19.
《光谱学快报》2013,46(3):267-277
The bridged ruthenium cluster-polypyridine dimer [Ru3O(CH3COO)6(py)2(tmbpy)Ru(bpy)2(Cl)](PF6)2 (py = pyridine, = 2, 2′-bipyridine and tmbpy = 4, 4′-trimethylenedipyridine) has been synthesized and structurally characterized based on 1H and 13C NMR spectroscopy. This species exhibits a complex pattern of NMR signals due to the presence of a paramagnetic [Ru3O] core and seven non-equivalent aromatic rings. 2D NMR (COSY, HMQC and HMBC) correlation techniques have been required for the total assignment of the 1H and 13C NMR spectra.  相似文献   

20.
The compound 2,10-dibromo-3-chloro-8-hydroxy-β-chamigrene was analysed in detail by NMR Spectroscopy. the complete assignment of the signals in the 1H and 13C NMR spectra and the determination of the relative configurations were achieved by 2D NMR techniques, AM1 data and 1H spectrum simulation. Comparisons of the results with related spiro chamigrene systems are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号