首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The damping processes of electronic collective excitations of Ag/Ni(1 1 1) were studied by high-resolution electron energy spectroscopy. The FMHM of the Ag surface plasmon was reported as a function of Ag thickness, primary electron beam energy, Ag surface plasmon energy, and parallel momentum transfer. The broadening of the Ag surface plasmon was found to be related to 5sp–5sp transitions, for which a critical wave vector of 0.2 Å−1 exists. Moreover, we provide a direct evidence of the occurrence of chemical interface damping in thin films, upon doping the Ag/Ni(1 1 1) system with K adatoms. The enhanced plasmon broadening in K/Ag/Ni(1 1 1) was ascribed to the existence of additional electron–hole decay channels at the K/Ag interface.  相似文献   

2.
The process of heat release during carbon particle formation and growth after pyrolysis of carbon suboxide C3O2 behind shock waves was investigated. For this goal, temperature and optical density of gas-particle mixtures initially consisting of 3% C3O2 + 5% CO2 in Ar were measured as a function of time. The temperature was determined by two-channel emission-absorption spectroscopy at λ = 2.7 ± 0.4 μm, corresponding to the CO2 (1,0,1) vibrational band. In the range of initial temperatures behind the shock waves from 1600 up to 2200 K a significant heating of the mixture during particle formation and growth was observed that increased towards higher temperatures. The analysis of the obtained data in combination with previous results about the temperature dependence of the particle size shows a decrease of the heat release of condensation from ∼200 kJ/mol per atom for particles containing ∼1000 atoms to ∼50 kJ/mol per atom for particle containing ∼106 atoms.  相似文献   

3.
Pt, Ru and Pt/Ru nano-particles, synthesized in ethylene glycol solutions, are studied using infrared (IR) spectroscopy and high resolution transmission electron microscopy (HRTEM). The synthesis method allows the control of the mono- and bi-metallic catalyst particle sizes between 1 and 5.5 nm. The IR spectra of CO adsorbed (COads) on the Pt, Ru and bi-metallic Pt/Ru colloids are recorded as a function of the particle size. The stretching frequency of COads depends on the particle size and composition. Strong IR bands due to the stretching vibration of COads are observed between 2010 and 2050 cm−1 for the Pt nano-particles, while two IR bands between 2030 and 2060 cm−1 for linear bonded COads, and at lower wavenumbers between 1950 and 1980 cm−1 for bridged bonded COads, are found for the Ru particles. The IR spectra for the Pt/Ru nano-sized catalyst particles show complex behaviour. For the larger particles (>2 ± 0.5 nm), two IR bands representative of COads on Ru and Pt-Ru alloy phases, are observed in the range of 1970-2050 cm−1. A decrease in the particle size results in the appearance of a third band at ∼2020 cm−1, indicative of COads on Pt. The relative intensity of the band for COads on the Pt-Ru alloy vs. the Pt phase decreases with decreasing particle size. These results suggest that Ru is partially dissolved in the Pt lattice for the larger Pt/Ru nano-particles and that a separate Ru phase is also present. A Pt-Ru alloy and Ru phase is observed for all Pt/Ru particles prepared in this work. However, a decrease in particle size results in a decrease of the number of Pt and Ru atoms in the Pt-Ru alloy phase, as they are increasingly present as single Pt and Ru phases.  相似文献   

4.
In this work, silicon suboxide (SiOx) thin films were deposited using a RF magnetron sputtering system. A thin layer of gold (Au) with a thickness of about 10 nm was sputtered onto the surface of the deposited SiOx films prior to the thermal annealing process at 400 °C, 600 °C, 800 °C and 1000 °C. The optical and structural properties of the samples were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and optical transmission and reflection spectroscopy. SEM analyses demonstrated that the samples annealed at different temperatures produced different Au particle sizes and shapes. SiOx nanowires were found in the sample annealed at 1000 °C. Au particles induce the crystallinity of SiOx thin films in the post-thermal annealing process at different temperatures. These annealed samples produced silicon nanocrystallites with sizes of less than 4 nm, and the Au nanocrystallite sizes were in the range of 7-23 nm. With increased annealing temperature, the bond angle of the Si-O bond increased and the optical energy gap of the thin films decreased. The appearance of broad surface plasmon resonance absorption peaks in the region of 590-740 nm was observed due to the inclusion of Au particles in the samples. The results show that the position and intensity of the surface plasmon resonance peaks can be greatly influenced by the size, shape and distribution of Au particles.  相似文献   

5.
The surface photoelectric effect and the surface plasmon resonances appear when a p/transverse magnetic polarized laser hits a gas-solid interface. We model this effect in the long wave length (LWL) domain (λvac > 10 nm,  < 124 eV) by combining the Ampère-Maxwell equation, written in classical approximation, with the material equation for the susceptibility. The resulting model, called the vector potential from the electron density (VPED), calculates the susceptibility as a product of the bulk susceptibility and the electron density of the actual system. The bulk susceptibility is a sum of the bound electron scalar susceptibility taken from the experiment and of the conduction electron non-local isotropic susceptibility tensor in a jellium metal (Lindhard, 1954 [1]). The electron density is the square of the wave function solution of the Schrödinger equation. The analysis of observables, the reflectance R and the photoelectron yield Y as well as the induced charge density permits to identify and characterize the multipole surface plasmon resonance of Al(111) appearing at ωm ∼ 0.8ωp or 11-12 eV.  相似文献   

6.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

7.
Magnetic hydrophobic aerogels (MHA) in the form of nanocomposites of silica and maghemite (γ-Fe2O3) were prepared by one step sol–gel procedure followed by supercritical solvent extraction. Silica alcogels were obtained from TEOS, MTMS, methanol and H2O, and Fe(III) nitrate as magnetic precursor. The hydrophobic property was achieved using the methytrimethoxysilane (MTMS) as co-precursor for surface modification. The so produced nanocomposite aerogels are monolithic, hydrophobic and magnetic. The interconnected porous structure hosts ∼6 nm size γ-Fe2O3 particles, has a mean pore diameter of 5 nm, and a specific surface area (SSA) of 698 m²/g. Medium range structure of MHA is determined by SAXS, which displays the typical fractal power law behavior with primary particle radius of ∼1 nm. Magnetic properties of the nanoparticle ensembles hosted in them are studied by means of dc-magnetometry.  相似文献   

8.
Dissociative chemisorption of O2 on Cu(1 0 0), S/Cu(1 0 0) and Ag/Cu(1 0 0) surface alloy has been investigated by Auger electron spectroscopy (AES). A strong reduction in the initial O2 chemisorption probability (S0) from 0.05 to 7.4 × 10−3 is observed already at an Ag coverage of 0.02 ML. Further Ag deposition results only in a moderate decrease in S0. Similar inhibition of O2 dissociation is observed on S/Cu(1 0 0). It is concluded that at very low Ag coverages, the reduced reactivity of Ag/Cu(1 0 0) towards O2 dissociation is primarily due to the steric blocking of the surface defects and that any electronic effects are only secondary and present only at higher Ag coverages.  相似文献   

9.
Magnetic properties of Co nanoparticles of 1.8 nm diameter embedded in Mn and Ag matrices have been studied as a function of the volume fraction (VFF). While the Co nanoparticles in the Ag matrix show superparamagnetic behavior with TB=9.5 K (1.5% VFF) and TB=18.5 K (8.9% VFF), the Co nanoparticles in the antiferromagnetic Mn matrix show a transition peak at ∼65 K in the ZFC/FC susceptibility measurements, and an increase of the coercive fields at low temperature with respect to the Ag matrix. Exchange bias due to the interface exchange coupling between Co particles and the antiferromagnetic Mn matrix has also been studied. The exchange bias field (Heb), observed for all Co/Mn samples below 40 K, decreases with decreasing volume fraction and with increasing temperature and depends on the field of cooling (Hfc). Exchange bias is accompanied by an increase of coercivity.  相似文献   

10.
In the present paper, the catalytic role of Ag in the oxygen adsorption of LaMnO3(0 0 1) surface has been theoretically investigated using first-principles calculations based on the density functional theory (DFT) and pseudopotential method. The O2 adsorption energy is larger for the vertical adsorption and the covalent bond was formed between O2 molecule and surface Mn. The calculation of electronic properties of interaction between Ag atom and LaMnO3(0 0 1) surface demonstrates that the most stable position for Ag adsorption is hollow site. The O2 adsorption energy dramatically increased from 0.298 eV to 1.108 eV due to Ag pre-adsorbed. It is Ag pre-adsorbed that facilitates O2 adsorption on surface. The bond length and bond population of O2 molecule indicate that Ag atom facilitates O2 molecule dissociative adsorption. The Ag atom strengthens LaMnO3(0 0 1) substrate activity and activity center was formed on surface, which enhances the electrocatalytic activity of LaMnO3 as solid oxide fuel cells cathode material at low temperature.  相似文献   

11.
Ag nanoparticles on SiO2/Si surfaces synthesized using the Tollen's reagent and a subsequent acid-etching were characterized using X-ray photoelectron spectroscopy (XPS). Combining the reduction of the Tollen's reagent and the chemical etching, one can create naked Ag nanoparticles with various sizes in the size range below ∼10 nanometers (nm). The reduced particle size by the chemical etching was identified using positive core level shifts with increasing etching time. Ag nanoparticles smaller than ∼3 nm undergo a reversible oxidation and reduction cycle by reacting with H2O2/H2O and a subsequent heating under vacuum to 150 °C, which was not found for the bulk counterparts and larger particles, demonstrating unique chemical properties of nanoparticles compared to the bulk counterparts.  相似文献   

12.
Ni80Fe20 permalloy nanoparticles (NPs) have been prepared by the polyol processing at 180 °C for 2 h and their particle sizes can be precisely controlled in the size range of 20-440 nm by proper addition of K2PtCl4 agent. X-ray diffraction results show that the Ni-Fe NPs are of FCC structure, and a homogeneous composition and a narrow size distribution of these NPs have been confirmed by scanning electron microscopy assisted with energy dispersion spectroscopy of X-ray (SEM-EDX). The saturation magnetization of ~440nm NPs is 80.8 emu/g that is comparable to that of bulk Ni80Fe20 alloys, but it decreases to 28.7 emu/g for ~20 nm NPs. The coercive force decreases from 90 to 3 Oe with decreasing NP size. The wide range of particle size is exploited to seek for high permeability composite particles. The planar type samples composed of the NiFe NPs exhibit low initial permeability due to the deteriorated magnetic softness and low packing density. However, when they are mixed with Fe micron particles, the initial permeability significantly increases depending on the mixing ratio and the NiFe NP size. A maximum initial permeability is achieved to be ~9.1 at 1 GHz for the Fe-10 vol%NiFe (~20 nmΦ), which is about three times that of pure Fe micron particles. The effects of Ni-Fe particle size, volume percentage and solvent on the static and dynamic permeability are discussed.  相似文献   

13.
CaSO4:Eu with particle size in submicron range was synthesized. Radiation induced Eu3+↔Eu2+ conversion as well as thermal conversion was studied. The samples showed thermal conversion above 400 °C. However, no radiation induced conversion in submicron range particles was observed. Particles heated above 400 °C coalesce and when heated at 925 °C bigger particles of 20 μm size were formed. Optical microscopy of these particles reveals red inclusion of about 5 μm inside CaSO4 particle. It is speculated that the red inclusion is CaS:Eu2+.  相似文献   

14.
Planetary milling technique has been a very promising way to obtain bulk superconductors with very high critical current density, Jc, albeit a detail characterisation of milled secondary phase precursor powders in particular has not been reported to date. Hence we report systematic studies of the effect of addition of planetary milled Gd2BaCuO5 (Gd-211) on the final microstructures and superconducting properties of air-processed Gd–Ba–Cu–O/Ag bulk samples. Average size of Gd-211 precursor particles, which were planetary milled with 1.0 mm ZrO2 beads, has been observed to decrease significantly from 1.03 μm to 0.52 μm with increasing milling duration. Besides the size distribution of milled Gd-211 was narrow compared to that of the reference powder. A small amount of Zr was detected, however, in the milled Gd-211 powder by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) and its content was increased with increasing milling period, which led to an inhomogeneous bulk microstructure. Significantly, the average size of Gd-211 particles milled for 45 min has been observed to decrease from 0.73 μm to 0.48 μm without severe contamination of Zr when the diameter of the beads were reduced from 1.0 mm to 0.3 mm. Trapped magnetic field of single grain Gd–Ba–Cu–O/Ag bulk sample with 32 mm in diameter prepared from almost Zr free Gd-211 fine particles recorded over 1.5 T at 77 K, which was almost 1.3 times greater than that of the reference sample. Nevertheless the repulsive force of both bulk samples showed around 57 N at a gap of zero between the sample surface and SmCo5 permanent magnet.  相似文献   

15.
We have studied formation of Au-Ag alloy nanoparticles in sputtered SiO2 thin films. Silica thin films containing Au-Ag nanoparticles were deposited on quartz substrates using rf reactive magnetron co-sputtering technique. The films heat-treated in reducing Ar + H2 atmosphere at different temperatures. They were analyzed by using UV-vis spectrophotometry, atomic force microscopy and X-ray photoelectron spectroscopy (XPS) methods for their optical, surface morphological as well as structural and chemical properties. The optical absorption of the Au-Ag alloy nanoparticles illustrated one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. XPS results showed that the alloys were in metallic state, and they had a greater tendency to lose electrons as compared to their corresponding monometallic state. Using lateral force microscopy analysis, we have found that the alloy particles were uniformly distributed on the surface with grain size of about 20 nm.  相似文献   

16.
Novel low density TiO-TiO2-carbon black composite was synthesized, which involved the deposition of inorganic coating on the surface of core-shell latex particles and subsequent removal of latex particles by calcination in high-purity nitrogen. The morphology and interior structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The images exhibited the composite had spherical shape and smooth surface, and the interior structure was hollow or porous. X-ray diffraction peaks (XRD) were mostly in agreement with the standard diffraction patterns of rutile TiO2. In addition, the observed peaks at 2θ of 43.5°, 50.6° and 74.4° can be indexed to (1 1 1), (2 0 0) and (2 2 0) planes of cubic phase TiO. The X-ray photoelectron spectroscopy (XPS) results indicated that composite consisted of carbon black, TiO and TiO2. The apparent density of the composite was suitable to 1.62 g cm−3, due to density matching with suspending media. Glutin-arabic gum microcapsules containing TiO-TiO2-carbon black composite electrophoretic liquid were prepared via complex coacervation. The particles in the microcapsules showed excellent electrophoretic mobility under a DC field.  相似文献   

17.
We report (FePt)Ag-C granular thin films for potential applications to ultrahigh density perpendicular recording media, that were processed by co-sputtering FePt, Ag, and C targets on MgO underlayer deposited on thermally oxidized Si substrates. (FePt)1−xAgx-yvol%C (0<x<0.2, 0<y<50) films were fabricated on oxidized silicon substrates with a 10 nm MgO interlayer at 450oC. We found that the Ag additions improved the L10 ordering and the granular structure of the FePt-C films with the perpendicular coercivity ranging from 26 to 37 kOe for the particle size of 5-8 nm. The (FePt)0.9Ag0.1-50vol%C film showed the optimal magnetic properties as well as an appropriate granular morphology for recording media, i.e., average grain size of Dav=6.1 nm with the standard deviation of 1.8 nm.  相似文献   

18.
The yield of secondary electrons emitted from an epitaxial three monolayer (3 ML) NiO(1 0 0)/Ag(1 0 0) film excited by soft X-ray linearly polarized synchrotron radiation at the Ni L2,3 absorption threshold has been measured for different values of the thickness of a MgO(1 0 0) capping layer. Compared with the as grown 3 ML NiO(1 0 0)/Ag(1 0 0) film, we observe a significant enhancement by about a factor 1.2 of the secondary electron emission for the capped 8 ML MgO(1 0 0)/3 ML NiO(1 0 0)/Ag(1 0 0) sample. A further substantial yield enhancement by a factor 1.6 with respect to the uncapped NiO sample is observed after deposition of an additional 8 ML MgO(1 0 0) film, for a total capping layer thickness of 16 ML. The observed secondary electron yield enhancement is discussed in terms of modified electronic structure, surface work function changes, and characteristic electron propagation lengths.  相似文献   

19.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

20.
The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of “cethyl trimethylammonium bromide” (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号