首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

2.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

3.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

4.
The desorption of Br adatoms from Br-saturated Si(1 0 0)-(2 × 1) was studied with scanning tunneling microscopy as a function of dopant type, dopant concentration, and temperature for 620-775 K. Analysis yields the activation energies and prefactors for desorption, and the former correspond to the energy separation between the Fermi level and Si-Br antibonding states. Thus, electron capture in long-lived states results in Br expulsion via a Franck-Condon transition. Analysis of the prefactors reveals that optical phonons provide the energy needed for the electronic excitation. These results show that desorption induced by an electronic transition can occur in closed system without external stimulus, and they indicate that thermally-excited charge carriers may play a general role in surface reactions.  相似文献   

5.
On metals such as Zr, during hydrogen exposure, dissolution competes with desorption; this competition can be probed by thermal desorption at different heating rates. In the case of desorption from preadsorbed hydrogen, only ∼1% of the hydrogen can be desorbed even at heating rates of >1010 K s−1. Recent measurements of the dynamics of hydrogen released by water dissociation on Zr(0 0 0 1) [G. Bussière, M. Musa, P.R. Norton, K. Griffiths, A.G. Brolo, J.W. Hepburn, J. Chem. Phys. 124 (2006) 124704] have shown that the desorbing hydrogen originates from the recombinative desorption of adsorbed H-atoms and that over 25% of the water collisions lead to hydrogen desorption. To gain further insight into the desorption and dissolution of hydrogen and in an attempt to resolve the paradox of the different desorption yields from H2 vs. H2O exposures, we report new measurements of the laser induced thermal desorption (LITD) of hydrogen from Zr(0 0 0 1) at initial temperatures down to 90 K. The low temperature was chosen because work function measurements suggested that hydrogen adsorbed into only the outermost (surface site) of the two available adsorption sites (surface and subsurface), from which we postulated much more efficient desorption at high heating rates compared to desorption from the sub-surface sites. However, hydrogen desorption by LITD from Zr(0 0 0 1) at 90 K still only accounts for 1% of the adsorbed species, the remainder dissolving into the bulk at LITD heating rates. The different yields alluded to above remain unexplained (Bussière, 2006).  相似文献   

6.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

7.
The hydrogenation of ethylene on Ni(1 0 0) surface has been studied by TDS. The decrease in the bonding energy with increasing coverage is revealed for both of adsorbed hydrogen and ethylene by the shift of desorption to lower temperatures. Ethane formation is only observed on the preadsorbed hydrogen coverage exceeding 0.5 monolayer (ML), coupled with the growth of H2 shoulder peak at lower temperatures. Further increase of H coverage to saturation reduces the bonding energy of subsequently adsorbed ethylene by 15 kJ/mol and decreases the saturation coverage of ethylene to about one-third on the clean surface. This leads to the shift of ethane desorption from 250 to 220 K and an appearance of additional ethane peak at 180 K. The latter ethane formation coincides with the hydrogenation of surface ethyl species derived from ethyl iodide as a precursor. It indicates that the rate of ethyl formation on the surface would be comparable to that of subsequent hydrogen addition to the surface ethyl species in the hydrogenation of ethylene when the preadsorbed hydrogen coverage approaches 1.0 ML.  相似文献   

8.
Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.  相似文献   

9.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   

10.
A.P. Farkas 《Surface science》2007,601(1):193-200
The adsorption, desorption and dissociation of ethanol have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss (HREELS) spectroscopic measurements on Mo2C/Mo(1 0 0). Adsorption of ethanol on this sample at 100 K led to a work function decrease suggesting that the adsorbed layer has a positive outward dipole moment By means of TPD we distinguished three adsorption states, condensed layer with a Tp = 162 K, chemisorbed ethanol with Tp = 346 K and irreversibly bonded species which decomposes to different compounds. These are hydrogen, acetaldehyde, methane, ethylene and CO. From the comparison of the Tp values with those obtained following their adsorption on Mo2C it was inferred that the desorption of methane and ethylene is reaction limited, while that of hydrogen is desorption limited process. HREEL spectra obtained at 100 K indicated that at lower exposure ethanol undergoes dissociation to give ethoxy species, whereas at high exposure molecularly adsorbed ethanol also exists on the surface. Analysis of the spectral changes in HREELS observed for annealed surface assisted to ascertain the reaction pathways of the decomposition of adsorbed ethanol.  相似文献   

11.
H. Rauscher  R.J. Behm 《Surface science》2007,601(19):4608-4619
The interaction of CO with structurally well-defined PtxRuy surface alloys supported on Ru(0 0 0 1) was investigated by thermal desorption spectroscopy and infrared reflection-absorption spectroscopy. The surface composition and the distribution of the surface atoms were controlled by high resolution scanning tunneling microscopy. On these surfaces, which have a nearly random distribution of the two surface species, the adsorption (and desorption) of CO is strongly modified compared to the pure elemental surfaces, by strain effects and electronic ligand effects. CO adsorbs exclusively in a linear configuration on Pt and Ru atoms for all surfaces investigated. The adsorption energy of CO is lowered on the alloy surfaces with respect to both Pt(1 1 1) and Ru(0 0 0 1), similar as for pseudomorphic monolayer Pt films. For both Pt and Ru sites the adsorption strength decreases with increasing Pt concentration.  相似文献   

12.
The diamond (1 0 0) surface with amino terminations is investigated based on density function theory within the generalized gradient approximation. Our calculated negative electron affinity of diamond (1 0 0) surface with hydrogen termination provides a necessary condition for initiating radical reaction. The results display that the ammonia molecule can form stable C-N covalent bonds on the diamond surface. In addition, due to the lower adsorption energy of one amino group binding on diamond surface, single amino group (SAG) model is easy to be realized in experiment with the comparison of double amino group (DAG) model. The adsorbed ammonia molecule will induce acceptor-like gap states with little change of the valence and conduction band of diamond in SAG model. The adsorption mechanism in the formation of ammonia monolayer on H-terminated diamond (1 0 0) surface, and two possible adsorption structures (SAG and DAG) were especially studied.  相似文献   

13.
Phosphine and tertiarybutylphosphine adsorption on the indium-rich InP (0 0 1)-(2 × 4) surface at 25 °C have been studied by internal reflection infrared spectroscopy, X-ray photoelectron spectroscopy, and low energy electron diffraction. Both molecules form a dative bond to the empty dangling bonds on the In-P heterodimers and the second-layer In-In dimers and vibrate symmetrically at 2319 (2315) and 2285 (2281) cm−1 and asymmetrically at 2339 (2339) and 2327 (2323) cm−1. A fraction of these species dissociate into adsorbed PH2 with the hydrogen and tertiarybutyl ligands transferring to nearby phosphorus sites. The calculated energy barriers for desorption (<11 kcal/mol) of these molecules is less than that for dissociation (>17 kcal/mol) and explains their low sticking probabilities at elevated temperatures under InP growth conditions.  相似文献   

14.
The abstraction of chemisorbed hydrogen on Si(1 0 0) and Si(1 1 1) induced by atomic hydrogen has been investigated by studying with a rotatable mass spectrometer the angle-resolved molecular hydrogen desorption from a Si surface exposed to a chopped beam of atomic hydrogen. The angular distributions of desorbing molecules can be fitted independent of the surface temperature and the surface reconstruction by a cosnθ function with n < 1 for Si(1 0 0) and Si(1 1 1). These results are interpreted by non-activated pathways involving site-specific hot-atom abstraction on two adjacent silicon atoms with one having a dangling bond. Possible mechanisms according to the surface reconstructions are discussed.  相似文献   

15.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

16.
We have used scanning tunneling microscopy (STM) to explore the details of single and multiple H atom desorption from the H-Si(1 0 0)-2 × 1 surface induced by the inelastic scattering of electrons from an STM tip. The desorption of pairs of H atoms from individual Si dimers is rarely observed. Two-H atom desorption most often involves pairs of dimers, in the same or adjacent rows. This suggests that recombinative H2 desorption via an interdimer reaction pathway, like that observed recently under nanosecond laser heating, may also be operative for electron-induced excitation using STM. Repeatable fabrication of desired size-selected dangling bond (DB) clusters is also achieved. The single atomic precision of the fabrication is a result of the intrinsically unfavorable paired H atom desorption from a single dimer, but does not result from the spatial localization of excitation energy of the Si-H bond under the STM tip as suggested in previous studies.  相似文献   

17.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

18.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

19.
E. Demirci 《Surface science》2009,603(20):3068-3071
The condensation and desorption of nickel tetra-carbonyl (Ni(CO)4) on Cu(1 1 0) has been studied by thermal desorption spectroscopy. A quite unusual evolution of the desorption spectra is observed. First a desorption peak appears at around 140 K, which disappears with increasing coverage and merges into a clearly separated new desorption peak at around 150 K. This transformation takes place at a coverage of about 10% of a monolayer. It is suggested that the low temperature peak is due to desorption of monomers. With increasing coverage nucleation and growth of multilayer islands starts, from which the desorption energy is higher due to the higher coordination of the carbonyl molecules, compared to that of the monomers. Evaluation of the multilayer desorption spectra yields a desorption energy of 57.9 kJ/mol (0.60 eV) and an unusually high frequency factor of 1.6 × 1019 s−1.  相似文献   

20.
The bonding and growth mechanism of photochemically attached olefin molecules to (1 0 0)(2 × 1):H diamond is characterized using atomic force (AFM) and scanning tunneling microscopy (STM) experiments in combination with molecular orbital calculations. To identify growth schemas, diamond surfaces after 10, 40 and 90 min of photo-chemically stimulated growth have been characterized. These data show clearly island formation which is discussed taking into account a growth model from silicon. The island growth shows no directional properties which are attributed to arrangement and geometrical properties of hydrogen terminated carbon bonds at the surface of (1 0 0) oriented (2 × 1) reconstructed diamond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号