首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plastic anisotropy of sheet metal is usually caused by preferred orientation of grains, developed by mechanical deformation and thermal treatment. In the present study, a Taylor-like polycrystal model suggested by Asaro and Needleman is applied to investigate the evolution of the anisotropic behavior of a face centered cubic (FCC) polycrystalline metal, which is considered having {111} (110) slip systems, by stretching it along an arbitrary direction after it has undergonea plane-strata compression that rationally simulates the cold rolling process of FCC polycrystalline pure aluminium. By using the Taylor-like polycrystal model, pole figures are obtained to describe the texture development of polycrystalline aggregate after plane-strain compression, and then the plastic anisotropy of polycrystalline aggregate is evaluated by stretching the polycrystalline aggregate in different direction in term of yield stress. According to the results, the contours of longitudinal flow stress in three-dimensional orientation space are given and analyzed. Experiment results similar to the prediction of planar anisotropy can be found inthe literature written by Takahashi et al. that in directly show the correctness of the prediction of non-planar plastic anisotropy by this analysis.  相似文献   

2.
This paper presents a new framework to predict the qualitative and quantitative variation in local plastic anisotropy due to crystallographic texture in body-centered cubic polycrystals. A multiscale model was developed to examine the contribution of mesoscopic and local microscopic behaviour to the macroscopic constitutive response of bcc metals during deformation. The model integrated a dislocation-based hardening scheme and a Taylor-based crystal plasticity formulation into the subroutine of an explicit dynamic FEM code (LS-DYNA). Numerical analyses using this model were able to predict not only correct grain rotation during deformation, but variations in plastic anisotropy due to initial crystallographic orientation. Optimal results were obtained when {1 1 0}〈1 1 1〉, {1 1 2}〈1 1 1〉, and {1 2 3}〈1 1 1〉 slip systems were considered to be potentially active. The predicted material heterogeneity can be utilised for research involving any texture-dependent work hardening behaviour, such as surface roughening.  相似文献   

3.
We present a systematic investigation on the strain hardening and texture evolution in high manganese steels where twinning induced plasticity (TWIP) plays a significant role for the materials' plastic deformation. Motivated by the stress–strain behavior of typical TWIP steels with compositions of Fe, Mn, and C, we develop a mechanistic model to explain the strain-hardening in crystals where deformation twinning dominates the plastic deformation. The classical single crystal plasticity model accounting for both dislocation slip and deformation twinning are then employed to simulate the plastic deformation in polycrystalline TWIP steels. While only deformation twinning is activated for plasticity, the simulations with samples composed of voronoi grains cannot fully capture the texture evolution of the TWIP steel. By including both twinning deformation and dislocation slip, the model is able to capture both the stress–strain behaviors and the texture evolution in Fe–Mn–C TWIP steel in different boundary-value problems. Further analysis on the strain contributions by both mechanisms suggests that deformation twinning plays the dominant role at the initial stage of plasticity in TWIP steels, and dislocation slip becomes increasingly important at large strains.  相似文献   

4.
A methodology is presented for the use of the oxide scale that develops in polycrystalline Ni-base superalloys at service temperature, as a speckle pattern for μm-scale resolution strain measurements. Quantitative assessment of the heterogeneous strain field at the grain scale is performed by high-resolution SEM digital image correlation under monotonic and cyclic loading in polycrystalline Ni-base superalloys up to 650 °C. In the René 88DT superalloy, strain localization is observed near twin boundaries during low cycle fatigue (LCF) at intermediate temperatures, correlating with activation of {111} 〈110〉 and {111} 〈112〉 slip systems. A strong correlation between the microstructural configuration that promotes strain localization during monotonic loading and crack initiation at 650 °C in low cycle fatigue was observed.  相似文献   

5.
Twinning is an important deformation mode in hexagonal metals to accommodate deformation along the c-axis. It differs from slip in that it accommodates shear by means of crystallographic reorientation of domains within the grain. Such reorientation has been shown to be reversible (detwinning) in magnesium alloy aggregates. In this paper we perform in-situ neutron diffraction reversal experiments on high-purity Zr at room temperature and liquid nitrogen temperature, and follow the evolution of twin fraction. The experiments were motivated by previous studies done on clock-rolled Zr, subjected to deformation history changes (direction and temperature), in the quasi-static regime, for temperatures ranging from 76 K to 450 K. We demonstrate here for the first time that detwinning of { 10[`1] 2 } á 10[`1][`1] ñ\left\{ {10\overline 1 2} \right\}\left\langle {10\overline 1 \overline 1 } \right\rangle tensile twins is favored over the activation of a different twin variant in grains of high-purity polycrystalline Zr. A visco-plastic self-consistent (VPSC) model developed previously, which includes combined slip and twin deformation, was used here to simulate the reversal behavior of the material and to interpret the experimental results in terms of slip and twinning activities.  相似文献   

6.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

7.
A texture simulation method is described for some complex plane strain deformation paths during hot shaping of FCC metals. The method employs both finite element calculations and a polycrystal plasticity model based on the Relaxed-Constraints (RC) Taylor hypothesis and a viscoplastic constitutive law. We have considered the {111}<110> slip systems and the {100}, {110}, {112} <110> non-octahedral slip systems. The finite element codes simulate the strain paths of material flow during a shaping process. The local velocity gradients, expressed in the macroscopic reference coordinates, are rewritten in the local flow line coordinates using a kinematic analysis for steady-state flow. Secondly, for the different deformation paths, the RC polycrystal plasticity model is used to numerically simulate the local deformation texture evolutions as a function of depth. Texture simulations are carried out for two deformation processes combining hot compression and shear: extrusion and reversible rolling. For extrusion, the simulated pole figures and ODFs show the typical texture variations through the thickness of an extruded 6082 aluminium alloys, i.e. (β-fibre in the centre and a TD rotated copper component near the surface. It is shown that hot reversible rolling should develop a strong pure shear texture {001}<110> near the surface.  相似文献   

8.
A large strain elastic-viscoplastic self-consistent (EVPSC) model for polycrystalline materials is developed. At single crystal level, both the rate sensitive slip and twinning are included as the plastic deformation mechanisms, while elastic anisotropy is accounted for in the elastic moduli. The transition from single crystal plasticity to polycrystal plasticity is based on a completely self-consistent approach. It is shown that the differences in the predicted stress-strain curves and texture evolutions based on the EVPSC and the viscoplastic self-consistent (VPSC) model proposed by Lebensohn and Tomé (1993) are negligible at large strains for monotonic loadings. For the deformations involving unloading and strain path changes, the EVPSC predicts a smooth elasto-plastic transition, while the VPSC model gives a discontinuous response due to lack of elastic deformation. It is also demonstrated that the EVPSC model can capture some important experimental features which cannot be simulated by using the VPSC model.  相似文献   

9.
An elasto-plastic self-consistent (EPSC) polycrystal model is extended to account, in an approximate fashion, for the kinematics of large strains, rigid body rotations, texture evolution and grain shape evolution. In situ neutron diffraction measurements of the flow stress, internal strain, texture and diffraction peak intensity evolutions were performed on polycrystalline copper and stainless steel, up to true tensile strains of ε = 0.3. Suitably adjusted slip system hardening model parameters enable the model to quantitatively describe the flow stress of the polycrystalline aggregate. Quantitative predictions of the texture evolution and the internal strain evolution along the stress axis are good, while predictions of transverse internal strains (perpendicular to the tensile loading direction) are less satisfactory. The latter exhibit a large dispersion from grain to grain around a macroscopic average, and the implications of this finding for the interpretation of in situ neutron diffraction method are explored. Finally, as a demonstration of the applicability of the model to problems involving finite rotation, as well as deformation, simulations of simple shear were conducted which predict a texture evolution in agreement with published experimental data, and other modeling approaches as well.  相似文献   

10.
A self-consistent model for semi-crystalline polymers is proposed to study their constitutive behavior, texture and morphology evolution during large plastic deformation. The material is considered as an aggregate of composite inclusions, each representing a stack of crystalline lamellae with their adjacent amorphous layers. The deformation within the inclusions is volume-averaged over the phases. The interlamellar shear is modeled as an additional slip system with a slip direction depending on the inclusion's stress. Hardening of the amorphous phase due to molecular orientation and, eventually, coarse slip, is introduced via Arruda-Boyce hardening law for the corresponding plastic resistance. The morphology evolution is accounted for through the change of shape of the inclusions under the applied deformation gradient. The overall behavior is obtained via a viscoplastic tangent self-consistent scheme. The model is applied to high density polyethylene (HDPE). The stress-strain response, texture and morphology changes are simulated under different modes of straining and compared to experimental data as well as to the predictions of other models.  相似文献   

11.
Lightweight magnesium alloys, such as AZ31, constitute alternative materials of interest for many industrial sectors such as the transport industry. For instance, reducing vehicle weight and thus fuel consumption can actively benefit the global efforts of the current environmental industry policies. To this end, several research groups are focusing their experimental efforts on the development of advanced Mg alloys. However, comparatively little computational work has been oriented towards the simulation of the micromechanisms underlying the deformation of these metals. Among them, the model developed by Staroselsky and Anand [Staroselsky, A., Anand, L., 2003. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity 19 (10), 1843–1864] successfully captured some of the intrinsic features of deformation in Magnesium alloys. Nevertheless, some deformation micromechanisms, such as cross-hardening between slip and twin systems, have been either simplified or disregarded. In this work, we propose the development of a crystal plasticity continuum model aimed at fully describing the intrinsic deformation mechanisms between slip and twin systems. In order to calibrate and validate the proposed model, an experimental campaign consisting of a set of quasi-static compression tests at room temperature along the rolling and normal directions of a polycrystalline AZ31 rolled sheet, as well as an analysis of the crystallographic texture at different stages of deformation, has been carried out. The model is then exploited by investigating stress and strain fields, texture evolution, and slip and twin activities during deformation. The flexibility of the overall model is ultimately demonstrated by casting light on an experimental controversy on the role of the pyramidal slip 〈c + a〉 versus compression twinning in the late stage of polycrystalline deformation, and a failure criterion related to basal slip activity is proposed.  相似文献   

12.
A new latent hardening model for body-centered-cubic (bcc) single crystals motivated by the inapplicability of the Schmid law (Critical Resolved Shear Stress Criterion) is presented. This model is based on the asymmetry of shearing resistance of the {112} slip planes depending on the shearing direction in the sense of ‘twin’ and ‘anti-twin’. For the interpretation of deformation of polycrystalline aggregates depending upon initial texture, a constitutive law for bcc single crystals is developed. This law is based on a rigorous constitutive theory for crystallographic slip that accounts for the effects of strain hardening, rate-sensitivity and thermal softening. The deformation response of textured polycrystal is investigated by means of a Taylor type averaging scheme and an established numerical procedure. Results for textured tungsten polycrystals at low and high strain rates for two different textures [001] and [011] are presented and compared with experimental results. The predictions compare well with experimental observations for the [001] texture. In the [011] texture, due to the reduced symmetry of deformation, lateral tensile stresses develop even under uniaxial compression. These lateral tensile stresses are responsible for observed lack of ductility and transgranular failure in the [011] texture.  相似文献   

13.
The paper presents a framework for a fast computational estimate of the texture evolution in fcc polycrystals. The underlying basis is a Taylor-type approach of rigid-plasticity for fcc crystals, where the decision of slip activity is based on a purely geometric argument in terms of the rate of total deformation. This approach allows a purely kinematic estimate of the texture evolution completely independent of the hardening response of the single crystal grains. We show that such a geometric estimate of the orientation microstructure provides very good approximations when compared with Taylor-type models of rigid viscoplasticity or elasto-plasticity of fcc crystals. It is shown for several deformation modes of polycrystalline aggregates that the geometric approach predicts the texture evolution very well in the range of large strains. In contrast to standard approaches for the analysis of texture, the proposed new method is extremely robust and very fast even for a high number of discrete grain orientations. As a consequence, such an approach provides a perfect base for large scale computations of anisotropy development in polycrystals.  相似文献   

14.
We draw upon existing knowledge of twinning and slip mechanics to develop a diffraction analysis model that allows for empirical quantification of individual deformation mechanisms to the macroscopic behaviors of low symmetry and phase transforming crystalline solids. These methods are applied in studying elasticity, accommodation twinning, deformation twinning, and slip through neutron diffraction data of tensile and compressive deformations of monoclinic NiTi to ~18% true strain. A deeper understanding of tension–compression asymmetry in NiTi is gained by connecting crystallographic calculations of polycrystalline twinning strains with in situ diffraction measurements. Our analyses culminate in empirical, micromechanical quantification of individual elastic, accommodation twinning, deformation twinning, and slip contributions to the total macroscopic stress–strain response of a monoclinic material subjected to large deformations. From these results, we find that 20–40% of the total plastic response at high strains is due to deformation twinning and 60–80% due to slip.  相似文献   

15.
A material model which describes the rate-dependent crystallographic slip of FCC metals has been implemented into a quasistatic, large deformation, nonlinear finite element code developed at Sandia National Laboratories. The resultant microstructure based elastic–plastic deformation model has successfully performed simulations of realistic looking 3-D polycrystalline microstructures generated using a Potts-model approach. These simulations have been as large as 50,000 elements composed of 200 randomly oriented grains. This type of model tracks grain orientation and predicts the evolution of sub-grains on an element by element basis during deformation of a polycrystal. Simulations using this model generate a large body of informative results, but they have shortcomings. This paper attempts to examine detailed results provided by large scale highly resolved polycrystal plasticity modeling through a series of analyses. The analyses are designed to isolate issues such as rate of texture evolution, the effect of mesh refinement and comparison with experimental data. Specific model limitations can be identified with lack of a characteristic length scale and oversimplified grain boundaries within the modeling framework.  相似文献   

16.
The tensile deformation response and texture evolution of aluminum alloyed Hadfield steel single crystals oriented in the 〈1 6 9〉 direction is investigated. In this material, the strain hardening response is governed by the high-density dislocation walls (HDDWs) that interact with glide dislocations. A microstructure-based visco-plastic self-consistent model was modified to account for mechanical twinning in addition to the prevailing contribution of the HDDWs. Simulations revealed the contribution of twinning to the overall work hardening at the later stages of deformation. Moreover, both the deformation response and the rotation of the loading axis associated with plastic flow are successfully predicted even at the high-strain levels attained (0.53). Predicting the texture evolution serves as a separate check for validating the model, motivating its utilization in single and polycrystals of other alloys that exhibit combined HDDWs and twinning.  相似文献   

17.
Atomistic simulations have shown that a screw dislocation in body-centered cubic (BCC) metals has a complex non-planar atomic core structure. The configuration of this core controls their motion and is affected not only by the usual resolved shear stress on the dislocation, but also by non-driving stress components. Consequences of the latter are referred to as non-Schmid effects. These atomic and micro-scale effects are the reason slip characteristics in deforming single and polycrystalline BCC metals are extremely sensitive to the direction and sense of the applied load. In this paper, we develop a three-dimensional discrete dislocation dynamics (DD) simulation model to understand the relationship between individual dislocation glide behavior and macro-scale plastic slip behavior in single crystal BCC Ta. For the first time, it is shown that non-Schmid effects on screw dislocations of both {110} and {112} slip systems must be implemented into the DD models in order to predict the strong plastic anisotropy and tension-compression asymmetry experimentally observed in the stress-strain curves of single crystal Ta. Incorporation of fundamental atomistic information is critical for developing a physics-based, predictive meso-scale DD simulation tool that can connect length/time scales and investigate the underlying mechanisms governing the deformation of BCC metals.  相似文献   

18.
In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.  相似文献   

19.
The general latent hardening law of single slip derived in the first paper of this series (Havner, Baker and Vause, 1979) is applied to an analysis of “overshooting” phenomena in bcc crystals in tension and compression. This new law, which predicts anisotropic hardening of latent slip systems, is based upon the simple theory of finite distortional crystal hardening introduced by Havner and Shalaby (1977).Because of historical ambiguities regarding identification of the slip plane in bcc metals, parallel analyses are presented corresponding to two separate criteria: (i) slip on {110}, {112} and {123} crystallographic planes only; and (ii) slip on the plane of maximum resolved shear stress containing a 〈111〉 direction. It is established that the new hardening law is a theory of “overshooting” in bcc crystals according to either identification of the slip plane.A qualitative comparison between theoretical results and two experimental papers on Fe crystals is included. The general difficulties in making comparisons with the experimental literature on finite distortional latent hardening are briefly discussed.  相似文献   

20.
为了了解金属材料在极端加载下复杂动态响应过程中的多种机制和效应,重点针对Al材料在高压、高应变率加载下的塑性变形机制,在经典晶体塑性模型的基础上,对其中的非线性弹性、位错动力学和硬化形式进行改进,建立适用于高压、高应变率加载下的热弹-黏塑性晶体塑性模型。该模型可以较好地描述单晶铝和多晶铝材料屈服强度随压力的变化过程,相比宏观模型,用该模型还获得了多晶Al材料在冲击加载下的织构演化规律,揭示了织构择优取向行为和压力的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号