首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

2.
Copper (I) oxide nanocubes (Cu2O NCs) covered with cobalt oxide nanohexagons (Co3O4 NHs) were prepared through simple chemical method. Here, ascorbic acid is used as reducing and capping agent for the synthesis of nanocubes and nanohexagons. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy‐dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction spectroscopy (XRD) were employed to confirm the prepared nanocomposite. Cu2O NCs?Co3O4 NHs nanocomposite is drop cast on the glassy carbon electrode (GCE) for the fabrication of glucose sensor. The fabricated Cu2O NCs?Co3O4 NHs/GCE exhibited a better electrocatalytic activity towards the determination of glucose than that of individually fabricated Cu2O NCs and Co3O4 NHs modified GCE. Our finding exhibited a wide linear range from 1 μM to 5330 μM with LOD of 0.63 towards glucose. In addition, the sensor attained appreciable stability, repeatability and reproducibility. Practicality of the sensor was demonstrated in human serum samples. The main advantages of the fabricated sensor are simple, biocompatible, cost effective, fast response and highly stable electrode surface.  相似文献   

3.
An ascorbic acid (AA) amperometric sensor was fabricated based on a glassy carbon electrode (GCE) modified with a reduced graphene oxide-wrapped hierarchical TiO2 (RGO—TiO2) nanocomposite. The RGO—TiO2 nanocomposite was synthesized via the facial wet chemical method and characterized by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry and amperometric techniques were employed to investigate its electrocatalytic performance towards the AA oxidation. The combined advantages of RGO and TiO2 provide the electrode with higher current response and lower oxidation potential compared with those of bare GCE and TiO2 modified GCE. The proposed electrode can be used for the determination of AA in the wide concentration range from 1 to 1500 µM with the detection limit of 0.5 µM. The proposed electrode was successfully used to determine AA in vitamin C tablets and spiked fruit juice.  相似文献   

4.
A reduced graphene oxide/platinum(II) tetraphenylporphyrin nanocomposite (RGO/Pt‐TPP)‐modified glassy carbon electrode was developed for the selective detection of hydrazine. The RGO/Pt‐TPP nanocomposite was successfully prepared via noncovalent π–π stacking interaction. The prepared nanocomposite was characterized using nuclear magnetic resonance, electrochemical impedance, ultraviolet–visible and Raman spectroscopies, scanning electron microscopy and X‐ray diffraction. The electrochemical detection of hydrazine was performed via cyclic voltammetry and amperometry. The RGO/Pt‐TPP nanocomposite exhibited good electrocatalytic activity towards detection of hydrazine with low overpotential and high oxidation peak current. The fabricated sensor exhibited a wide linear range from 13 nM to 232 μM and a detection limit of 5 nM. In addition, the fabricated sensor selectively detected hydrazine even in the presence of 500‐fold excess of common interfering ions. The fabricated electrode exhibited good sensitivity, stability, repeatability and reproducibility. In addition, the practical applicability of the sensor was evaluated in various water samples with acceptable recoveries.  相似文献   

5.
《Electroanalysis》2018,30(9):2044-2052
Acid functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were decorated with Au and Fe2O3 nanoparticles (FeONPs) and deposited on glassy carbon electrode (GCE). The resulting hybrid Au/Fe2O3/f‐MWCNTs/GCE electrode and the one further modified by glucose oxidase were compared for detection of glucose. FeONPs and Au were deposited on the f‐MWCNTs by sonication‐assisted precipitation and deposition‐precipitation methods, respectively. The morphology and structure of the samples were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. A uniform distribution of FeONPs with an average size of 5 nm increased the surface area of functionalized nanotubes from 39 to 50 m2/g. The electrocatalytic glucose detection on the modified electrodes was evaluated using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution at pH 7.0. The non‐enzymatic and enzymatic electrodes show sensitivity of 512.4 and 921.4 mA/mM.cm2 and detection limit of 1.7 and 0.9 mM, respectively. The enzymatic and enzymeless electrodes retained more than 70 % and 80 % of their cathodic faradic current after 70 days, respectively. The sensing mechanism of the non‐enzymatic biosensor is described through the reaction of glucose with iron (III) ions, while in the case of enzymatic electrode, glucose is oxidized by glucose oxidase.  相似文献   

6.
In this report, ruthenium nanoparticles (RuNPs) and calix[4]amidocrown‐5 (C4A5) were synthesized and grafted onto the surface of reduced graphene oxide (RGO) nanocomposite (RuNPs/C4A5/RGO). The morphologies of the nanocomposites were characterized by transmission electron microscope, scanning electron microscope, atomic force microscope, electrochemical impedance spectroscopy and x‐ray photoelectron spectroscopy. The electrochemical experiments were performed by cyclic voltammetry, electrochemical impedance spectroscopy and square wave voltammetry. The simultaneous determination of quercetin, rutin and morin was performed on glassy carbon electrode modified with RuNPs/C4A5/RGO (RuNPs/C4A5/RGO/GCE). The linearity ranges and the detection limits of QR, RT and MR were 1.0×10?10–1.0×10?8 M and 2.0×10?11 M respectively.  相似文献   

7.
《Electroanalysis》2017,29(10):2224-2231
The morphology and structure of as‐prepared aluminum silicon carbide (Al4SiC4) were characterized using X‐ray diffraction (XRD) patterns, scanning electron microscope (SEM), transmission electron microscopy (TEM) and UV‐vis spectra. The Al4SiC4 nanoparticles modified glassy carbon electrode (GCE) was further investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Based on this, this kind of new electrode was used for the detection of trace Cu2+ by square wave anodic stripping voltammetry (SWASV) for the first time. The electrochemical parameters influencing on deposition and stripping of metal ions, such as supporting electrolytes, pH value, deposition potential and deposition time, were also optimized. The results showed that the Al4SiC4 modified GCE exhibited excellent stripping response of Cu2+ and the stripping peaks response increased linearly with increasing concentration of Cu2+ in the ranges of 400 to 2200 nM. Under the optimized conditions the favorable sensitivity of the Al4SiC4 modified GCE toward trace Cu2+ was 1.49 μA μM−1 and the limit of detection (S/N=3) was estimated to be 2.76 nM. More importantly, Al4SiC4 modified GCE had an excellent stability and negligible interference from other coexisting metal ions in the electrochemical determination of Cu2+.  相似文献   

8.
Reduced graphene oxide (RGO)‐supported Cu–Cu2O nanocomposite material (Cu‐Cu2O@RGO) was prepared through a one‐pot reflux synthesis method. The morphology, crystal structure and composition of the prepared Cu‐Cu2O@RGO were characterized using transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron, infrared and Raman spectroscopies. Cu‐Cu2O@RGO as a heterogeneous catalyst was applied to tandem reactions of halides and sodium azide with terminal alkynes to synthesize effectively 1,4‐disubstituted 1,2,3‐triazoles. Moreover, the catalyst showed excellent recyclability performance with very little leaching of the metal. Compared with homogeneous catalysts, Cu‐Cu2O@RGO as a green and efficient catalyst was recoverable, easy to separate and highly stable in the tandem method for the synthesis of 1,2,3‐triazole compounds.  相似文献   

9.
In this study a PdSn based sensor was developed for the determination of benzoic acid (BA) in foods. A carbon (Vulcan XC‐72R) supported PdSn catalyst was prepared via polyol method and its surface electronic and chemical properties were investigated by advanced surface analytical techniques such as scanning electron microscopy (SEM), X‐ray diffraction spectroscopy (XRD), X‐ray Photoelectron Spectroscopy (XPS), temperature‐programmed reduction with H2 (TPR‐H2) and transmission electron microscopy (TEM). Electrochemical measurements were performed by employing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques on PdSn/GCE/Vulcan XC‐72R electrode. The developed sensor showed a wide linear range up to 10 mM with a 0.77 μM low limit of detection (LOD) as well as high stability. Further experiments were performed on food samples containing BA to achieve real sample measurements. For real sample measurements, PdSn/GCE/Vulcan XC‐72R electrode was used for the determination of BA in different kinds of samples such as mayonnaise, ketchup and carbonated beverages.  相似文献   

10.
晋冠平  林祥钦 《中国化学》2005,23(6):673-677
A choline and L-glutamic acid mixed monolayer covalently modified glassy carbon electrode (Ch-Glu/GCE) was fabricated and characterized by X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It provided an excellent example of mixed covalent monolayer modification of carbon electrodes with alkanol and amino acid, and also a facile means for altering the interfacial architecture. The Ch-Glu/GCE displayed good catalytic activity toward the oxidation of nitrite anions. Differential pulse voltammetry was used for determination of nitrite at the Ch-Glu/GCE. The Ch-Glu/GCE showed higher capability for restraint of pollutions than a simple Ch modified electrode or a simple Glu modified electrode.  相似文献   

11.
An electrochemical sensor was prepared using Au nanoparticles and reduced graphene successfully decorated on the glassy carbon electrode (Au/RGO/GCE) through an electrochemical method which was applied to detect Sunset Yellow (SY). The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical measurements. The results of cyclic voltammetry (CV) proved that Au/RGO/GCE had the highest catalytic activity for the oxidation of SY as compared with GCE, Au/GCE, and RGO/GCE. Differential pulse voltammetry (DPV) showed that the linear calibration curves for SY on Au/RGO/GCE in the range of 0.002 μM–109.14 μM, and the detection limit was estimated to be 2 nM (S/N = 3). These results suggested that the obtained Au/RGO/GCE was applied to detect SY with high sensitivity, low detection limit and good stability, which provided a promising future for the development of portable sensor in food additives.  相似文献   

12.
The authors report on a low temperature method for large-scale fabrication of cuprous oxide nanocubes deposited on nitrogen-doped reduced graphene oxide (Cu2O/N-RGO). The material was deposited in a glassy carbon electrode (GCE) where it is found to display enhanced electrocatalytic activity for oxidation of diethylstilbestrol (DES). The morphology and composition of Cu2O/N-RGO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The results demonstrate that the RGO is doped with 3.5% of nitrogen (atomic ratio), and that nanostructured Cu2O particles with controlled cubical morphology and an average size of about 450 nm have been homogeneously deposited on the surface of N-RGO sheets. The oxidation peak of DES was recorded at 0.315 V (vs. saturated calomel electrode) using differential pulse voltammetry. Under the optimal conditions, the modified GCE displays a linear response in the 0.3 to 150 μM DES concentration range, and the limit of detection is 10 nM. The method was applied to the determination of DES in spiked milk, meat and urine samples and gave excellent selectivity, stability and reproducibility.
Graphic abstract A nanocomposite consisting of Cu2O nanocubes/N-doped reduced graphene oxide (Cu2O/N-RGO) for the electrochemical determination of diethylstilbestrol (DES). The Cu2O/N-RGO modified electrode displays a linear response in the 0.3 to 150 μM DES concentration range. The method was applied to the determination of DES in spiked milk, meat and urine samples
  相似文献   

13.
Nanocomposites composed of cuprous oxide (Cu2O) and graphene were synthesized via reduction of copper(II) in ethylene glycol. This material possesses the specific features of both Cu2O and graphene. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from 0.1 to 10???M,with a detection limit of 10?nM (S/N?=?3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
Figure
Cu2O/Graphene nanocomposites were successfully prepared, Cu2O particles were uniformly distributed on transparent graphene and no particles scattered out of the supports. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear region, excellent selectivity and sensitivity to DA.  相似文献   

14.
ZnO nanoparticles (ZnO-NP) were prepared by a facile precipitation technique using di-isopropyl amine as precipitating agent. The morpho-structure and porosity of the as-prepared nano-powder were investigated by FT-IR analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET analysis. By drop-casting, a composite film was deposited to obtain ZnO-NP-Nafion/GCE modified electrode. The modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry (SWASV) for the detection of Pb2+, Cd2+, Cu2+, and Fe3+, and it was successfully applied for the detection of Pb2+ and Cu2+ in real water samples.  相似文献   

15.
β‐cyclodextrin (β‐CD) functionalized silver nanoparticles (AgNPs) and reduced graphene oxide (RGO) via one step electrochemical potentiodyanamic method has been prepared. Scanning electron microscopy, Energy‐Dispersive X‐ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the role of β‐CD on preparation of AgNPs and RGO. RGO/β‐CD/AgNPs modified GCE showed good electrochemical activity towards electro‐oxidation of hydrazine in terms of decreasing the over potential and increasing the peak current. The kinetic parameters such as electron transfer coefficient (α) and diffusion coefficient (Do) of the modified electrode towards hydrazine were determined to be 0.66 and 0.97×10?6 cm2 s?1, respectively. The LOD of our sensor was many folds lower than that of recommended concentration of hydrazine in drinking water by United States Environmental Protection Agency and World Health Organization. The sensor exhibited a wide linear range from 0.08 to 1110 µM and a very low detection limit (LOD) of 1.4 nM. In addition, the sensor selectively determined hydrazine even in the presence of common interferents.  相似文献   

16.
《Electroanalysis》2017,29(4):1154-1160
Oxidation and reduction processes of the insecticide fenthion was comparatively investigated at a reduced graphene oxide modified glassy carbon electrode (RGO‐GCE) and a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) using square wave stripping voltammetry (SWSV). The influence of pH and SW parameters was investigated. The linear concentration ranges were found to be 1 × 10−6 – 2 × 10−5 and 1 × 10−7 – 2 × 10−5 mol L−1 for Hg(Ag)FE and RGO‐GCE, respectively. The detection and quantification limits were calculated as 1.3 × 10−7 and 4.5 × 10−7 mol L−1 for Hg(Ag)FE and 7.6 × 10−9 and 2.5 × 10−8 mol L−1 for RGO‐GCE. Both of the developed electroanalytical methods offer rapid and simple detection of fenthion and were used on spiked tap and river water and apple juice samples. Scanning electron microscopy was used for RGO‐GCE surface characterization.  相似文献   

17.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

18.
《Electroanalysis》2018,30(2):238-249
A copper nano particles and cerium (IV) oxide modified carbon nanotube based composite on glassy carbon electrode (Cu−CeO2/MWCNT/GCE) was fabricated for simultaneous determination of guanine and adenine. The surface morphology, chemistry and conductance of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy dispersion X‐ray (EDX), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The Cu−CeO2/MWCNT/GCE improved electrochemical behaviour of guanine and adenine compared to other electrodes. The modified electrode was also used for individual and simultaneous determination of guanine and adenine. Under optimized conditions, the calibration curves were obtained linearly in the range of 0.20 to 6.00 μM for the guanine and 0.10 to 8.0 μM for the adenine by differential pulse voltammetry. The limits of detection of guanine and adenine were calculated as 0.128 and 0.062 μM, respectively. Interferences studies were also performed in the presence of inorganic and organic compounds. Moreover, the determination of guanine and adenine contents were carried out in a calf thymus DNA sample by the developed method with satisfactory results.  相似文献   

19.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

20.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号