首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined for the first time in an effort to characterize the paramagnetic species present in N-doped anatase TiO2 powders obtained by sol-gel synthesis. The experimental hyperfine coupling constants are well reproduced by two structurally different nitrogen impurities: substitutional and interstitial N atoms in the TiO2 anatase matrix. DFT calculations show that the nitrogen impurities induce the formation of localized states in the band gap. Substitutional nitrogen states lie just above the valence band, while interstitial nitrogen states lie higher in the gap. Excitations from these localized states to the conduction band may account for the absorption edge shift toward lower energies (visible region) observed in the case of N-doped TiO2 with respect to pure TiO2 (UV region). Calculations also show that nitrogen doping leads to a substantial reduction of the energy cost to form oxygen vacancies in bulk TiO2. This suggests that nitrogen doping is likely to be accompanied by oxygen vacancy formation. Finally, we propose that the relative abundance of the two observed nitrogen-doping species depends on the preparation conditions, such as the oxygen concentration in the atmosphere and the annealing temperature during synthesis.  相似文献   

2.
Deep impurity states associated with a substitutional nitrogen at an oxygen site (N(O)) are believed to be the source of the visible-light absorption of nitrogen-doped titanium dioxide (TiO(2)). Our comprehensive study using density functional theory (DFT) plus onsite Coulomb interaction (U) reveals that a titanium atom at an interstitial site (Ti(i)) is highly mobile and strongly binds with N(O). Hybridizations of N p with Ti d states of Ti(i) give rise to a new band at the valence band edge, eliminating the hole-trapping centers originated from the deep N(O) states. The suggested mechanism explains the photocatalytic oxidation reactions as well as the visible-light absorption observed on N-doped anatase TiO(2).  相似文献   

3.
TiO2-yNx纳米光催化剂的制备及其可见光响应机理   总被引:2,自引:1,他引:1  
利用溶胶-凝胶技术,以尿素为氮源,采用原位掺杂方式制备了TiO2-yNx纳米粉体;以亚甲基蓝(MB)溶液在可见光下的光催化降解评价其可见光催化活性;考察了体系初始pH值、N的掺杂量和焙烧温度对样品可见光催化活性的影响。 结合XRD、XPS、ESR和DRS测试技术,研究了N掺杂纳米TiO2的可见光响应机理。 研究结果表明,TiO2-yNx纳米粉体的优化制备工艺条件为:体系初始pH=0.52,掺杂比n(N)∶n(Ti)=1∶6,焙烧温度为440 ℃。 此条件下制备的样品N含量为0.77%,为单一的锐钛矿相,平均粒径为19.0 nm,具有良好的可见光催化活性。 N掺杂导致TiO2纳米粉体的表面羟基含量增加,形成了大量束缚单电子的氧空位;N取代晶格O形成了N-Ti-O和O-N-Ti键合结构。 N掺杂导致TiO2纳米粒子的吸收带边红移,对可见光的吸收能力明显增强,这表明N掺杂改变TiO2电子结构,使带隙窄化,降低光响应阈值。 N掺杂TiO2纳米粒子的可见光响应归因于N取代掺杂形成的掺杂能级与氧空位形成的缺陷能级共同作用所致。  相似文献   

4.
The electronic properties of N-doped rutile TiO2(110) have been investigated using synchrotron-based photoemission and density-functional calculations. The doping via N2+ ion bombardment leads to the implantation of N atoms (approximately 5% saturation concentration) that coexist with O vacancies. Ti 2p core level spectra show the formation of Ti3+ and a second partially reduced Ti species with oxidation states between +4 and +3. The valence region of the TiO(2-x)N(y)(110) systems exhibits a broad peak for Ti3+ near the Fermi level and N-induced features above the O 2p valence band that shift the edge up by approximately 0.5 eV. The magnitude of this shift is consistent with the "redshift" observed in the ultraviolet spectrum of N-doped TiO2. The experimental and theoretical results show the existence of attractive interactions between the dopant and O vacancies. First, the presence of N embedded in the surface layer reduces the formation energy of O vacancies. Second, the existence of O vacancies stabilizes the N impurities with respect to N2(g) formation. When oxygen vacancies and N impurities are together there is an electron transfer from the higher energy 3d band of Ti3+ to the lower energy 2p band of the N(2-) impurities.  相似文献   

5.
The interaction between implanted La, substitutional N, and an oxygen vacancy at TiO(2) anatase (101) surface has been investigated by means of first-principles density function theory calculations to investigate the origin of enhanced visible-light photocatalytic activity of La/N-codoped anatase observed in experiments. Our calculations suggest that both the adsorptive and substitutional La-doped TiO(2) anatase (101) surfaces are probably defective configurations in experiments. The h-Cave-adsorbed La doping decreases the formation energy for the substitutional N implantation and vice versa, while the charge compensation effects do not take effect between the adsorptive La and substitutional N dopants, resulting in some partially occupied states in the band gap acting as traps of the photoexcited electrons. The Ti(5c)-substituted La doping decreases the energy required for the substitutional N implantation, and the substitutional La and N codoping promotes the formation of an oxygen vacancy, which migrates from the O(sb-3c) site at the inner layer toward the surface O(b) site. For the substitutional La/N-codoped (Ti(5c)_O(3c-down)) surface, the charge compensation between the substitutional La and substitutional N leads to the formation of two isolated occupied N(s)-O π* impurity levels in the gap, while the excitation energy from the higher impurity level to the CBM decreases by about 0.89 eV. After further considering an oxygen vacancy on the Ti(5c)_O(3c-down) surface, the two electrons on the double donor levels (O(b) vacancy) passivate the same amount of holes on the acceptor levels (substitutional La and N), forming the acceptor-donor-acceptor compensation pair, which provides a reasonable mechanism for the enhanced visible-light photocatalytic activity of La/N codoped TiO(2) anatase. This knowledge may aid the further design and construction of new effective visible-light photocatalysts.  相似文献   

6.
Nitrogen-doped CeO2 nanoparticles were synthesized through a wet-chemical route. Nitrogen has been successfully incorporated into CeO2 nanoparticles and the nitrogen-doping level was also successfully controlled. The optical properties due to the different N-doping levels in CeO2 nanoparticles were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), which showed a visible-light absorbance shift. The resulting nanoparticles show enhanced visible-light sensitivity and photocatalytic activity compared to undoped CeO2 nanoparticles. DFT calculations were performed to explore the effect of nitrogen doping versus oxygen vacancies. The calculations show that the change of the electronic structure upon N-doping CeO2 is quite different from that of N-doped TiO2, which has been studied extensively.  相似文献   

7.
We present a theoretical study on electron and hole trap states in the bulk and (001) surface of anatase titanium dioxide using screened hybrid density functional calculations. In both the bulk and surface, calculations suggest that the neutral and ionized oxygen vacancies are possible electron traps. The doubly ionized oxygen vacancy is the most stable in the bulk, and is a candidate for a shallow donor in colorless anatase crystals. The hole trap states are localized at oxygen anions in both the bulk and surface. The self-trapped electron centered at a titanium cation cannot be produced in the bulk, but can be formed at the surface. The electron trap level at the surface oxygen vacancy is consistent with observations by photoelectron spectroscopy. The optical absorptions and luminescence in UV-irradiated anatase nanoparticles are found to come from the surface self-trapped hole and the surface oxygen vacancy.  相似文献   

8.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构.由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷,本文也采用DFT+U(Hubbard系数)方法对模型的电子结构进行了计算.DFT的计算结果表明N掺杂后,N2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低,而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响.DFT+U的计算却给出截然不间的结果,N掺杂并没有导致带隙能的降低,而只是在带隙中引入一个孤立的杂质能级,反而F掺杂以及氧空位的引入带来明显的带隙能降低.DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

9.
基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算了纯MgF2晶体、Co掺杂MgF2晶体、P掺杂MgF2晶体和(Co,P)双掺杂MgF2晶体的电子结构和光学特性.结果表明,掺杂后的MgF2晶体发生了畸变,原子之间的键长也有所变化.(Co,P)双掺杂后,由于非金属原子p态和金属原子d态之间的轨道杂化,在MgF...  相似文献   

10.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构. 由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷, 本文也采用DFT+U(Hubbard 系数)方法对模型的电子结构进行了计算. DFT的计算结果表明N掺杂后, N 2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低, 而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响. DFT+U的计算却给出截然不同的结果, N掺杂并没有导致带隙能的降低, 而只是在带隙中引入一个孤立的杂质能级, 反而F掺杂以及氧空位的引入带来明显的带隙能降低. DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

11.
The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.  相似文献   

12.
总结了拉曼光谱表征CeO2基固溶体中氧缺位的研究成果,评述了氧缺位的生成和影响氧缺位浓度观察值的因素,并提出了亟待解决的问题.CeO2基固溶体的拉曼谱图中出现三个重要的特征拉曼峰(465、560、600cm-1),一般分别归属于CeO2的F2g振动模式、氧缺位和MO8型缺陷物种.研究发现氧缺位的产生与掺杂金属离子价态有关,而MO8型缺陷物种的产生与掺杂金属离子半径有关.CeO2基固溶体中氧缺位浓度观察值(AD/AF2g)与样品吸光度和表面富集有关.原位拉曼光谱研究表明:气氛及温度影响CeO2基固溶体的吸光度变化,从而影响拉曼光谱采样深度,导致氧缺位浓度观察值的变化.  相似文献   

13.
作为光催化技术的核心, 提高TiO2的光催化活性和对可见光的利用率是当前光催化研究中最重要的研究课题. 为了提高TiO2纳米管的可见光催化活性, 采用化学气相沉积法对TiO2纳米管进行了氟掺杂. 扫描电子显微镜(SEM)结果表明退火温度对于TiO2纳米管的形貌完整性有较大影响, 当样品在550和700 °C下退火, 氟掺杂TiO2纳米管结构受损; X射线衍射(XRD)分析表明氟掺杂对TiO2由锐钛矿相转化为金红石相有阻碍作用; X射线光电子能谱(XPS)测试表明化学气相沉积能有效地对TiO2纳米管进行非金属掺杂, 且该方法安全、操作简单. 氟掺杂TiO2纳米管对甲基橙有较高的可见光催化降解活性. 第一性原理计算结果表明氟掺杂对TiO2带隙无显著影响, 费米能级附近的F 2p轨道电子位于价带底部, 与O 2p交联作用较小, 因此对TiO2光吸收带边影响不大. 氟掺杂能促进表面氧空穴的产生, 增加表面酸度与Ti3+, 有利于减少电子-空穴复合率, 从而提高其光催化活性.  相似文献   

14.
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.  相似文献   

15.
Pairwise defect interactions between divalent cation impurities, cation vacancies and anion vacancies have been studied in the extrinsic and intrinsic temperature ranges for the KClSr2+ system. Pair correlation functions have been derived for the various defect interactions distinguished by their site symmetries and these show the existence of associated divalent cation—cation vacancy and cation—anion vacancy pairs even at high temperatures. Pair formation gives way to dissociation at low impurity concentrations and high temperatures.  相似文献   

16.
To evaluate the electronic and optical properties of Cr‐doped anatase TiO2, three possible Cr‐doped TiO2 models, including Cr at a Ti site (model I), Cr at a Ti site with an oxygen vacancy compensation (model II), and an interstitial Cr site (model III), are studied by means of first principles density functional theory calculations. In model I, the splitting behavior of the Cr 3d states and the insulating properties are successfully depicted by the GGA+U method, from which it is proposed that Cr at a Ti site should exist as Cr4+ instead of the generally believed Cr3+. As a result, the electron transitions between these impurity states, the conduction band (CB), and the valence band (VB), as well as the d–d transitions between occupied and unoccupied Cr 3d states, provide a reasonable explanation for the experimentally observed major and minor absorption bands. In models II and III, the impurity states and associated optical transition processes—as well as the corresponding electron configurations—are examined.  相似文献   

17.
ZnO nanostructures have been electrochemically synthesized on three-dimensional, interconnected, and porous carbon nanofiber Buckypaper substrates. Using potentiostatic deposition, wurtzite ZnO with controlled microstructure and morphology has been deposited. While all ZnO deposits exhibit a band gap value of around 3.2 eV, impurity states determined by photoluminescence (PL) measurements show strong deposition potential influences. Both the green and red emissions corresponding to respective oxygen vacancies and oxygen rich impurity states can be identified. Thermal annealing can greatly reduce oxygen vacancy concentration but has limited effects on the oxygen rich defects. This study suggests a cost-effective and high-throughput approach in deposition of ZnO nanostructures suitable for photovoltaic applications.  相似文献   

18.
Mo掺杂对纳米TiO2结构和活性的影响   总被引:5,自引:0,他引:5  
利用Mo6 的掺杂在TiO2中引入缺陷,从而扩大TiO2催化剂的光谱响应范围。运用UV-Vis、XRD、XPS、TG-DTA等测试技术考察了钼离子掺杂浓度对于TiO2光催化剂吸收光谱范围、晶型、晶胞和晶粒的影响,分析了钼进入TiO2品格的方式、价态和掺杂催化剂在热处理过程中发生的物理和化学变化。以亚甲蓝溶液的光催化降解为模型反应,考察了掺杂量对这种新型光催化剂的光催化活性的影响。结果表明,Mo6 可进入TiO2晶格中形成杂质缺陷,引起TiO2品格膨胀,Mo6 的掺杂量影响TiO2晶粒尺寸和晶相转化。Mo6 掺杂的质量分数为4.5%时,样品的吸收带边可达460 nm,对40 mg/L亚甲蓝反应2 h的降解率为58.3%,矿化率为52.5%。而Mo6 的掺杂质量分数为3.0%和6.0%时,形成的TiO2晶粒尺寸较小,TiO2晶粒中锐钛矿相与金红石相的比例接近4:1时,对亚甲蓝降解率分别为56.6%和52.0%,矿化率分别为49.2%和44.2%。  相似文献   

19.
This study presents the experimental and theoretical study of highly internally Al‐doped TiO2 nanoparticles. Two synthesis methods were used and detailed characterization was performed. There were differences in the doping and the crystallinity, but the nanoparticles synthesized with the different methods share common features. Anatase to rutile transformation occurred at higher temperatures with Al doping. X‐ray photoelectron spectroscopy showed the generation of oxygen vacancies, which is an interesting feature in photocatalysis. In turn, the band‐gap energy and the valence band did not change appreciably. Periodic density functional calculations were performed to model the experimentally doped structures, the formation of the oxygen vacancies, and the band gap. Calculation of the density of states confirmed the experimental band‐gap energies. The theoretical results confirmed the presence of Ti4+ and Al3+. The charge density study and electron localization function analysis indicated that the inclusion of Al in the anatase structure resulted in a strengthening of the Ti?O bonds around the vacancy.  相似文献   

20.
Iron(III)-doped TiO(2) nanopowders, with controlled iron to titanium atomic ratios (R(Fe/Ti)) ranging from nominal 0 to 20%, were synthesized using oxidative pyrolysis of liquid-feed metallorganic precursors in a radiation-frequency (RF) thermal plasma. The valence of iron doped in the TiO(2), phase formation, defect structures, band gaps, and magnetic properties of the resultant nanopowders were systematically investigated using M?ssbauer spectroscopy, XRD, Raman spectroscopy, TEM/HRTEM, UV-vis spectroscopy, and measurements of magnetic properties. The iron doped in TiO(2) was trivalent (3+) in a high-spin state as determined by the isomer shift and quadrupole splitting from the M?ssbauer spectra. No other phases except anatase and rutile TiO(2) were identified in the resultant nanopowders. Interestingly, thermodynamically metastable anatase predominated in the undoped TiO(2) nanopowders, which can be explained from a kinetic point of view based on classical homogeneous nucleation theory. With iron doping, the formation of rutile was strongly promoted because rutile is more tolerant than anatase to the defects such as oxygen vacancies resulting from the substitution of Fe(3+) for Ti(4+) in TiO(2). The concentration of oxygen vacancies reached a maximum at R(Fe/Ti) = 2% above which excessive oxygen vacancies tended to concentrate. As a result of this concentration, an extended defect like crystallographic shear (CS) structure was established. With iron doping, red shift of the absorption edges occurred in addition to the d-d electron transition of iron in the visible light region. The as-prepared iron-doped TiO(2) nanopowders were paramagnetic in nature at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号