首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

2.
Heteroditopic hexahomotrioxacalix[3]arene receptors that are capable of binding an anion and a cation simultaneously in a cooperative fashion were synthesized. The structure of one of the triamide derivatives was confirmed by single‐crystal X‐ray diffraction. The binding of alkali metals at the lower rim, and the binding of anions (chloride, bromide) at the upper rim, has been investigated by using 1H NMR titration experiments. Alkali metal binding at the lower rim controls the calix cavity. Li+‐ion binding to the lower rim can improve the binding ability of anions at the upper rim amide moiety by a factor of 15, thus suggesting a strong positive allosteric effect for anion recognition. However, when a Na+ cation is bound to the ionophoric site on the lower rim, the calix cavity is changed from a “flattened cone” to a more‐upright form, which is favored for intramolecular hydrogen bonding between the neighboring NH and C?O groups; this change can block the inclusion of anions onto the amide moiety at the upper rim, which strongly suggests a negative allosteric effect of Na+‐ion binding, which controls the cooperative recognition system.  相似文献   

3.
A novel calix[4]arene derivative with two ferrocenyl Schiff-base groups at the upper rim 3 has been synthesized from 5,17-diformyl-25,27-dipropoxy-26,28-dihydroxy calix[4]arene and 4-ferrocenylaniline via condensation reaction. Reduction of 3 with sodium borohydride led to calix[4]arene derivative 4 with two amino ferrocenyl groups at the upper rim. The ferrocenyl Schiff-base calix[4]arene and its corresponding reduced amine have been purified and characterized by elemental analysis,1H NMR, FTIR, Mass and UV-vis spectral data. Electrochemical properties of compounds 3 and 4 have been investigated. Cyclic voltammograms of 3 and 4 show reversible redox couples of ferrocene/ferrocinium at E1/2=0.401 V and 0.346 V, respectively. Electrochemical studies show these redox active compounds electrochemically recognize trivalent lanthanides La3+ and Ce3+ and divalent Pb2+ and Cu2+cations. With ferrocenyl Schiff-base calix[4]arene 3 an anodic shift as large as 130 mV is observed on addition of one equivalent of Ce3+ ion. Also extraction properties of compound 4 towards some metal cations have been described. It has been observed that compound 4 has a good selectivity for metal cations Fe3+, Cu2+, Pb2+ and Cd2+ against Ni2+ and Co2+.  相似文献   

4.
New calix[4]arene derivative 1 of 1,3-alternate conformation with a ureido moiety has been synthesized in high yield and examined for its anion recognition abilities towards anions such as fluoride, chloride, bromide, iodide, nitrate and acetate by 1H NMR and UV-vis spectroscopy. The results show that receptor has strong binding affinity for chloride ions. A chloride ion selective electrode (ISE) was also formed which showed excellent selectivity over all the other anions tested. The limit of detection is 2.51 × 10−5 mol dm−3.  相似文献   

5.
A comparative study of the halide and benzoate anion binding properties of a series of phenyl, pyrrole, and furan-strapped calix[4]pyrroles has been carried out. These receptors, which have previously been shown to bind the chloride anion (Yoon et al., Angew. Chem., Int. Ed. 47(27):5038–5042, 2008), were found to bind bromide and benzoate anion (studied as the corresponding tetrabutylammonium salts) with near equal affinity in acetonitrile, albeit less well than chloride, as determined from ITC measurements or NMR spectroscopic titrations. This stands in marked contrast to the parent octamethylcalix[4]pyrrole, where the carboxylate anion affinities are substantially higher than those for bromide anion under identical conditions. This finding is rationalized in terms of tighter binding cavity present in the strapped systems. For all three anions for which quantitative data could be obtained (i.e., Cl?, Br?, PhCO2 ?), the pyrrole-strapped system displayed the highest affinity, although the relative enhancement was found to depend on the anion in question. In the specific case of fluoride anion binding to the pyrrole-strapped receptor, two modes of interaction are inferred, with the first consisting of binding to the calix[4]pyrrole via NH-anion hydrogen bonds, followed by a process that involves deprotonation of the strapped pyrrolic NH proton. A single crystal X-ray diffraction analysis provides support for the first of these modes and further reveals the presence of a methanol molecule bound to the fluoride anion.  相似文献   

6.
The synthesis and the spectroscopic studies of the amidourea based calix[4]arene sensors 1 and 2 are described. The 4-nitrophenyl based sensor 1 was synthesized in two steps from the corresponding calix [4]arene tetraethyl ester and shown to give rise to color changes in the UV-vis spectra in DMSO upon recognition of pyrophosphate and fluoride. Fitting the changes in the absorption spectra using nonlinear regression analysis indicated strong binding of several anions by 1 such as acetate and hydrogen phosphate in 1:1 (Host:Guest) stoichiometry, and at higher concentration in 1:2 stoichiometry. The preorganized calix-cavity was, however, not found to host chlorine while binding of bromide was determined. At high concentrations of these anions, significant colorimetric changes were also observed that were clearly visible to the naked eye for both pyrophosphate and fluoride. The phenyl analogue 2 was made to enable analysis of the anion recognition using 1H NMR titrations and showed that ions such as phosphate were bound in 1:1 stoichiometry, whereas the "urea" protons were shown to be significantly affected upon coordination to the anion.  相似文献   

7.
Herein we report a D3h‐symmetric tail‐to‐tail bis‐calix[6]arene 3 featuring two divergent cavities triply connected by ureido linkages. This calix[6]tube was synthesized by a domino Staudinger/aza‐Wittig reaction followed by a macrocyclization reaction. This process also afforded a C2h‐symmetric isomer that represents a rare example of a self‐threaded rotaxane based on calix[6]arene subunits. The binding properties of 3 have been evaluated by NMR studies. Thus, bis‐calix[6]arene 3 is able to bind simultaneously two neutral ureido guests through an induced‐fit process. The guests are located in the cavities and are recognized through multiple hydrogen‐bonding interactions with the ureido bridges. Host 3 can also simultaneously bind multiple ions and is especially efficient for the complexation of organic ion triplets. The anion is recognized through hydrogen‐bonding interactions at the ureido binding site and is thus located between the two ammonium ions accommodated in the cavities. The resulting [1+1+2] quaternary complexes represent rare examples of cascade complexes with organic cations. These complexes are unique: 1) They are stable even in a markedly protic solvent, 2) the recognition of the ion triplets proceeds in a cooperative way through an induced‐fit process and with a high selectivity, linear cations and doubly charged anions being particularly well recognized, 3) the ions are bound as contact ion triplets thanks to the closeness of the three binding sites, 4) the cationic guests can be exchanged and thus mixed [1+1+1+1] complexes can be obtained, 5) the ureido linkers wrapped around the anion adopt a helical shape and the resulting chirality is sensed by the cations. In other words, bis‐calix[6]arene 3 presents a selective inner tunnel in which multiple guests such as organic ion triplets can be aligned in a cooperative way through induced‐fit processes.  相似文献   

8.
i-Corona[3]arene[3]tetrazines were synthesized from the nucleophilic aromatic substitution reaction of resorcinol and its derivatives with 3,6-dichlorotetrazine in a one-pot fashion under mild conditions. All of the resulting macrocycles adopted 1,3,5-alternate conformation irrespective of the nature of the substituents on both upper- and lower-rims. i-Corona[3]arene[3]tetrazine was found to self-regulate its macrocyclic conformation and cavity to recognize anions with binding constants spanning from 26 M−1 to 2.2×103 M−1 depending on the structure of the anions. The selective binding resulted from a significant interdependent and synergistic effect between multiple tetrazine π/anion and Caryl–H/anion hydrogen bond interactions. Taking advantage of synergistic effect revealed, a cyanobenzene-embedded i-corona[3]arene[3]tetrazine was designedly synthesized and highly selective and very strong affinity toward nitrate with a binding constant of 2.2×105 M−1 was achieved.  相似文献   

9.
Abstract

Recognition ability of both cationic pillar[5]arene and calix[4]arene has been studied in aqueous media. Anion complexation can be evaluated from their ability to complex their counterions as well as an added external organic anion. DOSY NMR experiments and fluorescence quenching show that pillararenes have a larger ability for including their own counterions than calixarenes irrespective of the anion (tetrafluoroborate or chloride or bromide) and the structure of the cationic moiety (trimethylammonium or methylimidazolium). Counterion complexation shows a picture where four to five positive charges of the pillar[5]arene are neutralised, meanwhile only one positive charge of the calixarene is neutralised for a 1 mM solution of the macrocycle. Irrespective of the smaller net positive charge in the pillar[5]arene, its binding ability for organic anions (toluenesulfonate or hydroxybenzoate) is larger than for calix[4]arene allowing a better accommodation of the guest in its cavity. The larger separation between the cationic groups of the receptor and its electron-rich aromatic region improves the anion recognition ability for pillar[5]arene.  相似文献   

10.
Two-armed neutral anion receptors (4,5), calix[4]arenes beating thiourea and amide binding sites, were prepared and examined their anion-binding ability by the UV-vis spectra. The results of non-linear curve fitting and Job plot indicate that 4 or 5 forms 1:1 stoichiometry complex with fluoride by hydrogen bonding interactions. Receptors 4 and 5 have an excellent selectivity for fluoride but have no binding ability with acetate, dihydrogen phosphate and the halogen anions (Cl^-,Br^-,I^-).  相似文献   

11.
The complexation of zinc calix[4]arene or calix[4]pyrrole bisporphyrinates with alkali metal cations, halide anions, and triethylenediamine was studied by 1H NMR spectroscopy. It was established that the binding of molecules and/or charged particles by various fragments of calix[4]arene and calix[4]pyrrole porphyrins are interrelated processes. This makes it possible to use one process (for example, complexation of the calix[4]arene fragment of the macrocycle with alkali metal cations or complexation of the calix[4]pyrrole fragment with halide ions) as a tool for controlling another process (complexation of the porphyrin fragments of the macrocycle with neutral molecules).  相似文献   

12.
The anion binding properties of fluorinated calix[n]pyrroles (n = 4-6) in aprotic solvents (acetonitrile and DMSO) and modified reaction conditions allowing for the synthesis and isolation of the hitherto missing dodecafluorocalix[6]pyrrole from the condensation of 3,4-difluoro-1H-pyrrole and acetone are described. In acetonitrile solution containing 2% water, the association constants for the 1:1 binding interaction between octafluorocalix[4]pyrrole and chloride anion obtained with isothermal titration calorimetry (ITC) and (1)H NMR titration methods were found to match reasonably well. As compared to its nonfluorinated congener, octafluorocalix[4]pyrrole was found to display enhanced binding affinities for several representative anions in pure acetonitrile as judged from ITC analyses. Similar analyses of the fluorinated calix[n]pyrroles revealed an increase in the relative affinity for bromide over chloride with increasing macrocycle size, as manifest in a decrease in the binding ratio K(a(Cl))/K(a(Br)). Anion binding studies in the solid state, involving single-crystal X-ray diffraction analyses of the chloride and acetate anion complexes of octafluorocalix[4]pyrrole and decafluorocalix[5]pyrrole, respectively, confirmed the expected hydrogen bond interactions between the pyrrolic NH protons and the bound anions.  相似文献   

13.
Calix[6]pyrrole 2 and the "hybrid systems" calix[3]furan[3]pyrrole 12, calix[2]furan[4]pyrrole 13, and calix[1]furan[5]pyrrole 14, have been synthesized by increasing conversion of the furan units present in the readily accessible calix[6]furan 3 to pyrroles. The host-guest chemistry of these novel macrocycles towards a number of anions, including halogen ions, dihydrogen phosphate, hydrogen sulfate, nitrate, and cyanide has been investigated in solution by (1)H NMR titration techniques and/or phase transfer experiments. The solid-state structures of the free receptors 2, 12, and 13, the 1:1 complexes of calix[6]pyrrole 2 with chloride and bromide, and the 1:1 complex of 14 with chloride are also reported.  相似文献   

14.
We synthesized the new calix[4]arene amines bearing two and four imidazole or tert-butylamine moieties (9a,b/10a,b) by the reaction of di- or tetra-tosylated calix[4]arene derivatives (7 and 8, respectively) with 1-(3-aminopropyl)imidazole and/or tert-butylamine, respectively. After the characterization of 9a,b/10a,b their extraction abilities toward Cr(VI) anionic species (CAS) was evaluated and compared by the liquid–liquid extraction method. The extraction results revealed that calix[4]arene amine having four imidazole groups (10a) was an efficient anion receptor for CAS. Moreover, the extraction of CAS by 10a in the presence of other anions such as Cl?, NO3?, and PO43? showed that 10a could be a selective anion receptor for CAS in the presence of those anions.  相似文献   

15.
Abstract

Single halogen atom (i. e. I, Br, Cl and F) substituted calix[4]pyrroles, compounds 2, 3, 4 and 5, were synthesized. Studies of these systems reveal that replacement of a single β-pyrrolic hydrogen atom can increase the anion binding ability of calix[4]pyrroles for a variety of anions (e. g. Cl?, Br?, H2PO4 ? and HSO? 4) relative to normal non-halogen substituted calix[4]pyrrole 1. In the case of chloride anion, the expected relative affinity sequence of 5 > 4 > 3 > 2 was observed. This was not found to be true for Br?, H2PO? 4, and HSO? 4. Here, the chlorine substituted calix[4]pyrrole 4 was found to display a slightly higher affinity in the case of each anion than the fluorine-bearing derivative 5. This was rationalized in terms of intermolecular NH … F hydrogen bonding interactions being present in CD2Cl2 solutions of 5. Support for this latter conclusion came from concentration and temperature-dependent NMR spectroscopic studies.

A matched set of mono halogen substituted calix[4]pyrroles was used to study in detail, the extent to which halogen substituents may be used to fine-tune the anion binding properties of calix[4]pyrroles.  相似文献   

16.
Two calix[4]arene derivatives, in the partial cone conformation, with sulfur-containing functionalities, were tested as neutral carrier ionophores in potentiometric silver-selective electrodes of conventional membrane and membrane-coated glassy carbon electrode types. Comparison with a calix[4]arene in the cone conformation was made. The membranes were prepared using either 2-nitrophenyl octyl ether or bis(ethylhexyl)sebacate as plasticizers and potassium tetrakis(p-chlorophenyl)borate as the lipophilic salt in a poly(vinyl chloride) matrix. Both calix[4]arenes yielded electrodes of good sensitivity (approx. 47 mV dec−1) in the range 10−4–10−1 M and excellent selectivity [log KAg,MH+ < −1.5] of transition, alkali and heavy metal cations, including sodium, mercury(II) and lead(II) cations. Temperature effects and reproducibility of response were determined and the interfering effects of mercury(II) and lead (II) ions on the membranes were noted. The partial cone conformation allows improved selectivity over certain cations relative to calix[4]arenes in the cone conformation.  相似文献   

17.
Two novel calix[4]arene receptors containing ferrocene units in cone (L1) and 1,3-alternate (L2) conformations have been synthesized from 25,27-dihydroxy-26,28-bis[(3-aminopropyl)oxy]calix[4]arene 4 or 25,26,27,28-tetra[(3-aminopropyl)oxy]calix[4]arene 6 and ferrocenecarboxaldehyde via condensation, respectively. Their structures have been characterized by 1H, 13C, APT, COSY NMR, FTIR, HSMR, and UV–vis spectral data. The electrochemical behavior of L1 and L2 has been investigated in the presence of F?, Cl?, Br?, H2PO4?, CH3COO? anions. Electrochemical studies show that these receptors electrochemically recognize CH3COO?, H2PO4?, and Cl?, anions. Using an UV–vis study, the selectivity to these anions in DMSO solution was confirmed.  相似文献   

18.
采用密度泛函理论的M06-2X/6-31G(d, p)方法对杯[4]吡咯(CP)与卤素离子(X-=F-, Cl-, Br-)及卤素-铵根离子对的各种可能组装体系进行了系统研究. 详细讨论了各体系的结构、结合能、自然键轨道分析(NBO)和Multiwfn波函数分析的情况. 结果显示杯[4]吡咯与卤素阴离子的相互作用主要是氢键, 波函数分析显示在CPCl-和CP-Br-复合物中长程范德华力和空间位阻作用也明显存在. 杯[4]吡咯能与卤素-铵根离子形成稳定的复合物, 主要通过氢键作用、阴-阳离子的静电作用以及阳离子-π相互作用.从理论上探讨了杯[4]吡咯与离子或离子对的2:1组装体系,但相对于1:1组装体系来讲, 2:1体系并不占优势.本文结果进一步表明, 杯[4]吡咯不仅是一种阴离子受体,而且也是一种良好的离子对受体,尤其是对涉及氟离子的客体,更是如此.  相似文献   

19.
Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor.  相似文献   

20.
A series of calix[4]arene derivatives containing N or S atoms atthe lower rim were synthesized by etherification of OH groups and their metal-ion extraction abilities were studied. The extraction selectivity for Ag+ over other ions with these novel receptors was outstanding. Among these ligands, calix[4]arene podand, which possessed two linear ligands, has shown better binding ability with Ag+ than calix[4]crowns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号