首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
王海阔  贺端威  许超  刘方明  邓佶睿  何飞  王永坤  寇自力 《物理学报》2013,62(18):180703-180703
通过分析二级6-8型大腔体静高压装置八面体压腔的受力状况, 研制了一种使用成本低、尺寸大且易于加工的多晶金刚石-硬质合金复合二级(末级)顶锤(压砧). 采用原位电阻测量观测Zr在高压下相变(α-ω, 7.96 GPa; ω-β, 34.5 GPa)的方法, 标定了由多晶金刚石-硬质合金复合末级压砧构建的5.5/1.5(传压介质边长/二级顶锤锤面边长, 单位: mm)组装的腔体压力. 实验表明, 自行研制的多晶金刚石-硬质合金复合末级压砧可使基于国产六面顶压机构架的二级加压系统的压力产生上限从约20 GPa提高到35 GPa以上, 拓展了国内大腔体静高压技术的压力产生范围. 应用这一技术, 我们期望经过末级压砧材料与压腔设计的进一步优化, 在基于国产六面顶压机的二级6-8 型大腔体静高压装置压腔中产生超过50 GPa的高压. 关键词: 二级6-8型大腔体静高压装置 多晶金刚石-硬质合金复合末级压砧 压力标定  相似文献   

2.
二级6-8型静高压装置厘米级腔体的设计原理与实验研究   总被引:1,自引:0,他引:1  
利用大腔体静高压装置的实验数据,提出了"极限压缩体积比"的概念以及腔体与组装设计的一般性原理。通过对极限压缩体积比的分析,设计出了样品腔体达到厘米级的36/20(正八面体传压介质边长为36mm/末级压砧正三角形截角边长为20mm)组装。采用原位电阻观测Bi(Ⅲ-Ⅴ,7.7GPa),ZnTe(Ⅰ-Ⅱ,5GPa;Ⅱ-Ⅲ,8.9~9.5GPa;半导体-金属,11.5~13.0GPa)和ZnS(半导体-金属,15.6GPa)在高压下相变的方法,标定了36/20组装的腔体压力。实验结果表明所设计样品腔的尺寸大于10mm,压力可以达到15GPa以上。本工作使得基于国产6×2 500t(吨)铰链式六面顶压机的二级6-8型静高压装置在高压实验研究中具有更加广阔的应用前景。  相似文献   

3.
大腔体压机技术因具有静水压性好、样品尺寸大、样品腔内压力与温度分布均匀,且可与同步辐射X射线、中子衍射、超声测量等技术结合对样品进行原位测量等优点,越来越受到高压领域科研工作者的青睐。国内大腔体压机技术多基于国产铰链式六面顶压机构架,国产六面顶压机常规一级压腔所能产生的压力极限较低,约为6GPa,在一定程度上制约了国内高压科学及相关学科的发展。近几年,基于国产六面顶压机,设计了两种一级压腔增压系统,集成了6-8型二级压腔加压装置。目前,在提供厘米量级样品的前提下,设计的两种一级压腔所能达到的最高压力约为10GPa;若采用硬质合金二级顶锤,设计的6-8型二级压腔所能达到的最高压力约为20GPa。最近,自行设计并制备了可产生高于50GPa压力的多晶金刚石二级顶锤,采用此种顶锤将基于国产六面顶压机构建的二级加压系统的压力标定至35GPa,拓展了国内大腔体静高压技术的压力产生范围。  相似文献   

4.
采用基于国产铰链式六面顶压机二级6-8型大腔体静高压装置中的10/4(即八面体传压介质边长为10mm,二级WC-Co硬质合金立方块截角边长为4mm)组装,选择不同的围压材料和传压硬质合金台棱、圆片,在室温下用ZnTe的高压相变对压腔进行了压力标定。实验结果表明,叶蜡石是较合适的围压材料;但由于传压台棱、圆片自身强度的限制,及一级压腔形成的围压值较低等原因,致使实验没有达到预期的末级压砧围压增强效果。通过结合两种压腔的力学简化模型分析得知,围压材料与二级增压装置的预密封边共同形成了二级压腔的密封边,该大面积密封边消耗了系统的大部分加载力,因此在围压实验中没有观测到二级6-8型大腔体静高压装置压力极限的提高。  相似文献   

5.
基于国产铰链式六面顶压机二级6-8型静高压装置,采用去尖3节式36/20结构,设计了一种"桥式"结构的石墨加热组装,通过高压原位温度测量获取加热功率与温度的对应关系,得到了稳定的p-T(2.5~10.4GPa,0~1 650/1 800℃)区域。同时样品腔体直径可以达到13mm,实现了厘米级大样品的高温高压制备。讨论了组装的电阻与温度之间的关系,并分析了电阻变化的原因。通过对样品烧结情况的表征,来反映腔体的温度分布情况。研究工作对基于国产铰链式六面顶压机的二级6-8型静高压装置的加热设计有一定的参考意义,并具有良好的实用性。  相似文献   

6.
 首次报道了一种新型的基于铰链式六面顶压机的二级6-8模大腔体静高压装置的内置加热元件的设计与温度标定。此加热组装结构简单,升温快,保温效果好,并有效地解决了国外基于两面顶压机构架下的二级6-8模内加热组装中热电偶在施加压力时易断的问题。以低成本的碳管为加热元件,采用直接和间接两种加热方式,用双铂铑(Pt6%Rh-Pt30%Rt)B型热电偶进行温度测量,并根据实验过程中加热功率与腔内实际温度的关系,对不同压力下腔体内的温度进行了标定。实验结果表明:此加热系统的油压达到40 MPa(腔体压力约10 GPa)时,温度可以达到1 700 ℃以上;在油压为30 MPa、样品室温度为1 000 ℃时,保温时间可达2 h,甚至更长;实验中获得样品的直径可达3 mm,高度可达7 mm,实现了在高温超高压条件下大样品的制备,满足了实验对产生高温超高压条件的需要。  相似文献   

7.
利用自行设计与集成的二级6—8型大腔体静高压装置,研究了影响八面体压腔高压发生效率的主要因素及机理,并提出了一种八面体压腔密封的简化力学模型.针对于10/4(八面体传压介质边长为10 mm,二级WC立方体增压块截角边长为4 mm)组装的实验结果发现:预密封边尺寸会显著影响八面体压腔的压力产生效率;在腔体压力为12 GPa左右时,高压发生效率随八面体MgO传压介质初始密度的增加而提高;在15 GPa以上时,影响压力产生效率的主要因素是WC增压立方块本身的强度以及加压过程中所形成密封边的尺寸及材料. 关键词: 6—8型大腔体静高压装置 压力产生效率  相似文献   

8.
 介绍了一种6-8型二级加压装置——1 000 t Walker型大腔体高温高压装置中样品的组装方式、组装件材料和压力标定方法。采用碳化钨作为压砧时,获得的最高压力超过20 GPa。压力标定方法采用相变点法,即利用Bi、Tl、ZnTe、Pb、SnS、GaAs等标准压力标定物质,通过测量其在室温高压下的电阻变化,确定相变点,进而获得高压腔体内的压力与外加载荷的关系。对具有不同二级压砧截角边长(4、6、8、12 mm)组装的内部实际压力进行标定,得到了外加载荷与内部压力的关系曲线,为今后在该装置上的实验样品组装及样品实际压力确定提供了准确的数据。  相似文献   

9.
国产铰链式六面顶压机是我国独立发展起来的大腔体高压装置,经过50多年的不断发展,在工业高压合成和高压科学研究领域取得了丰硕成果,在国际上占据一席之地。本文仅以四川大学高压科学与技术实验室在国产铰链式六面顶压机应用于高压科学研究的技术研发为镜,展示国产铰链式六面顶压机大腔体高压装置在应用于高压科学研究领域的发展历程和技术特点,以利于该装置在今后的研发过程中继续保持和发挥其独特性能,为我国工业高压合成和高压科学研究发挥更大的作用。  相似文献   

10.
最近研制的二级6-8型大腔体静高压装置可在15GPa以上的压力条件下进行厘米级样品的高压合成,对此装置的高压腔内置加热元件进行了设计与实验测试,并标定了不同的腔体压力下加热功率和温度的关系,同时用六角氮化硼在没有触媒的情况下转化成立方氮化硼的合成实验验证了此装置所达到的温压条件。实验结果表明,所设计的加热组装在高压高温下运行稳定,可以在压力超过14GPa、温度超过1 800℃的条件下进行厘米级样品的高温高压处理。  相似文献   

11.
A high-pressure apparatus with cubic-anvil device has been successfully working for more than 10 years at low temperatures down to 2?K under quasi-hydrostatic pressure up to 10?GPa in study of solid-state physics. Main parts of it are composed of a set of compact cubic-anvils, a top-loading high-pressure cryostat and a 250?ton press. All the particulars of the cubic-anvil apparatus are given, including pressure calibrations at low temperature.  相似文献   

12.
A new double-beveled anvil for the synthesis of high-quality diamonds has been described, which is used in a China-type large-volume, cubic-anvil, high-pressure apparatus (LV-CHPA, SPD-6X2000). Our results indicate that the pressure generation of a double-beveled anvil is more efficient than that of a single-beveled anvil. To gain the same cell pressure (5.5 GPa), the oil pressure of LV-CHPA using double-beveled anvils decreased by about 10%, compared to using single-beveled anvils. Furthermore, a double-beveled anvil can pressurize a cubic cell of 36 mm3 up to about 6.0 GPa, and simultaneously can increase the temperature up to 1360°C for routine operation. This provides considerable advantages to the synthesis of high-quality diamonds under ultra-high-pressure conditions with the same hydraulic rams.  相似文献   

13.
王海阔  任瑛  贺端威  许超 《物理学报》2017,66(9):90702-090702
将六面顶压机立方压腔内置入电路,采用原位电阻测量确定Bi,Tl,Ba相变的方法,标定了压腔内不同位置的压力(强).通过标定立方压腔顶锤表面的压力并结合计算,分别得到了外部加载与压腔密封边受力以及合成腔体受力的对应关系.实验分析结果表明,随着外部加载的增加,当腔体压力达到5 GPa时,消耗在压腔密封边上的加载急剧上升,消耗在合成腔体的加载趋于不变,从而导致立方压腔压力达到上限.利用实验结果,分析了立方压腔在高压下的受力状态,解释了立方压腔的压力难以超过7 GPa的原因.结合立方压腔的几何结构,通过理论分析,提出了采用高体弹模量的物质作为传压介质,同时采用低体弹模量的物质作为密封边提高立方压腔压力上限的可行方案.通过定量标定叶腊石压腔轴向的压力梯度,给出了压腔内沿对称轴不同位置压力值的计算方法,此方法可为高压实验提供更精确的压力数据.  相似文献   

14.
A massive cubic press, with a maximum load of 1400 tons on every WC anvil, has been installed at the High Pressure Laboratory of Peking University. High-P experiments have been conducted to examine the performance of the conventional experimental setup and some newly developed assemblies adopting the anvil-preformed gasket system. The experimental results suggest that (1) the conventional experimental setup (assembly BJC2-0) can reach pressures up to about 6 GPa with a large cell volume of 34.33 cm3; (2) the anvil-preformed gasket system, despite decreasing the P-generating efficiency, extends the P-generating capability up to about 8 GPa at the expense of reducing the cell volume down to 8.62 cm3 (assembly BJC2-6); (3) due to the large cell volume, it is possible to make further modifications to extend the pressure range, as readily demonstrated, to about 10 GPa (assembly BJC5-7); (4) the effect of high temperature on the pressure generation of the press is not significant. It follows that this cubic press can be very useful in synthesizing materials of large volume at high pressures and to the studies such as high-P phase equilibrium, trace element partitioning and isotope fractionation in the research fields of Earth and planetary sciences.  相似文献   

15.
In the present study, high pressure synthesis up to 10 GPa was done using a small cubic anvil apparatus (W45×D52×H92 cm3, load capacity of 1.80 MN) with a multi-anvil 6-6 system. Its performance was demonstrated by synthesizing a ferromagnetic perovskite oxide, CaCu3Fe4O12, at pressure–temperature conditions of 10 GPa and 1400 K. The synthesized CaCu3Fe4O12 perovskite was ~1 mm in diameter and ~2 mm in height and its size was large enough for performing magnetic susceptibility measurements at 5–300 K using a superconducting quantum interference device magnetometer and phase identification by X-ray diffraction. The experimental system developed in the present study has many advantages when used in high pressure synthesis experiments, and the technical development of a small cubic anvil apparatus will greatly contribute to the advancement of high pressure synthesis of novel materials.  相似文献   

16.
A new opposed-anvil high pressure and temperature apparatus was developed based on the Drickamer-type apparatus. Various improvements were made to increase the sample volume and to generate high pressure and temperature stably and easily. By optimizing components such as the anvil, heater, and gasket, large sample volumes of about 4?mm3 (~103 times more than that previously obtained with our previous apparatus) were achieved, with compact and light apparatus (outer diameter ? 40?mm; height 31?mm; weight 300?g). Pressures and temperatures up to about 15?GPa and 1700?K can routinely and stably be achieved by using this assembly. In order to extend the pressure range further, sintered diamond was used as an anvil material. As a result, pressures and temperatures of around 38?GPa and 1400?K were achieved, although the sample volume was decreased to about 1.3×10?1?mm3.  相似文献   

17.
The BaW04-17 phase is synthesized at 5.0 GPa and 610~C with a cubic-anvil apparatus and identified by XRD. Raman scattering measurement is carried out to investigate the phase behaviour of a pure BaW04-Ⅱ phase (space group P21/n, Z = 8) under hydrostatic pressures up to 14.8 GPa at ambient temperature. In each spectrum recorded for this phase, 27 Raman modes are observed, and all bands shift toward higher wavenumber with a pressure dependence ranging from 3.8 to 0.2 cm- 1/GPa. No pressure-driven phase transition occurs in the entire pressure range in this study. Our results indicate that the previously reported high pressure phase of Ba WO4 at pressure above about 10 GPa and room temperature (Errandonea et al. Phys. Rev. B 73(2006)224103) is not the BaW04-Ⅱ phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号