首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, graphitic solid core carbon nanorods (GSCNRs) were, for the first time, anchored to the surface of silica sands through the electron cyclotron resonance chemical vapor deposition method to provide coated silica sands as a new, low-cost, green, and efficient adsorbent for the removal of organic pollutants such as phenol and 2,4-dichlorophenol (2,4-DCP) from aqueous mediums. The characteristics of GSCNRs/SiO2 were confirmed through Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy techniques. After the optimization of several parameters, the removal efficiency of phenol and 2,4-DCP using 1 g of adsorbent amount, the initial concentration of pollutants (10 mg/L phenol and 15 mg/L 2,4-DCP), a contact time of 10 min (phenol) and 20 min (2,4-DCP), and pH = 7 were 69 and 89%, respectively. The adsorption isotherm models of Langmuir and Freundlich, as well as pseudo-first-order and pseudo-second-order kinetic models, were examined under optimal conditions. Eventually, GSCNRs/SiO2 was regenerated five times for the removal of phenol and 2,4-DCP. The removal efficiency of the tested contaminants from inlet raw water of a water treatment plant using the proposed adsorbent was investigated.  相似文献   

2.
The degradation of Orange G (OG) by persulfate (PS, S2O8 2?) activated with dual catalysts that combined zero-valent iron (ZVI) and copper oxide (CuO) was investigated through batch experiments. Effects of pH, initial OG concentration, persulfate dosages, and dosages of dual catalysts on OG degradation were also examined. Higher persulfate concentration and catalysts dosages resulted in higher OG degrading rates. The OG degradation was higher under acidic conditions (pH 3.0 and 5.0) when compared to alkaline conditions. The constituents and the morphology of the catalysts coating before and after reaction were also investigated with X-ray diffraction and scanning electron microscopy. Radical mechanism was studied and three radical scavengers [methanol (MA), tert-butanol (TBA), phenol] were used to determine the type of major active species taking part in the degradation of OG. It was assumed that the \({\text{SO}}_{4}^{ \cdot - }\) or \({\text{HO}} \cdot\) played a major role in the OG degradation. In conclusion, the ZVI/CuO/PS system is a good candidate for use in detoxifying water contaminants.  相似文献   

3.
Static-air-activated carbon fibers (ACFs) with lotus-root-like axially porous structure were used to adsorb 2,4-dichlorophenol (2,4-DCP) from aqueous solution. The adsorption isotherm was evaluated in the pH range 3.0-11.0. Results indicated that both Langmuir and Redlich-Peterson adsorption isotherms were appropriate for describing the adsorption characteristics of 2,4-DCP at various pH values and that lower pH values were favorable for adsorption. The adsorption of 2,4-DCP was controlled by the synergetic effects of pi-pi interaction and electrostatic attraction, and the former was dominant. Breakthrough curve results showed that the 2,4-DCP removal efficiency increased with an increase in the empty-bed contact time (EBCT). An EBCT of 0.660 min was sufficient for the adsorption of 2,4-DCP onto ACF, indicating a high adsorption rate. Desorption experiment results revealed that the ACF saturated with 2,4-DCP could be regenerated effectively by a 0.001 M NaOH solution.  相似文献   

4.
A modified headspace liquid-phase microextraction (HS-LPME) method was studied for the extraction of chlorophenols (CPs) from aqueous samples with complicated matrices, before gas chromatographic (GC) analysis with electron capture detection (ECD). Microwave heating was applied to accelerate the evaporation of CPs into the headspace, and an external-cooling system was used to control the sampling temperature. Conditions influencing extraction efficiency, such as the LPME-solvent, the sampling position of LPME, the sampling temperature, microwave power, and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly optimized. Experimental results indicated that the extraction of CPs from a 10mL aquatic sample (pH 1.0) was achieved with the best efficiency through the use of 1-octanol as solvent, microwave irradiation of 167W, and sampling at 45 degrees C for 10min. The detections were linear in the concentration of 5.0-100microg/L for 2,4-dichlorophenol (2,4-DCP), and 0.5-10microg/L for 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Detection limits were found to be 0.7, 0.04, 0.07, and 0.08microg/L for 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP, and PCP, respectively. A landfill leachate sample was analyzed with recovery between 83 and 102%. The present method was proven to serve as a simple, sensitive, and rapid procedure for CP analysis in an aqueous sample.  相似文献   

5.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

6.
A laponite modified carbon paste electrode was prepared, characterized and applied for the 2,4-dichlorophenol (2,4-DCP) voltammetric determination. It takes advantage of the ability of laponite to adsorb phenols, as well as of its availability and very low cost. Kinetic and equilibrium data for 2,4-DCP adsorption by laponite in aqueous dispersions demonstrated that the adsorption process obeyed a pseudo first order kinetic model and was consistent with the formation of adsorbed multilayers on a surface with heterogeneous pore distribution. The composite paste electrode exhibited a heterogeneous surface with 65 % increased surface area and 27 % enhanced catalytic activity compared to the unmodified one. The adsorptive stripping voltammetric determination of 2,4-DCP at an electrode with an optimized graphite:laponite ratio of 55 : 15 w% using a 3 min accumulation time at pH 5.5 was found to be suitable for its quantification in the linear concentration range extended up to 50 μmol L−1 with a sensitivity of 0.56 μA L μmol−1 and a LOD of 0.2 μmol L−1 (S/N=3).The 2,4-DCP electrochemical response was not affected by the presence of some structurally similar phenols, like catechol and p-nitrophenol, while resorcinol, 2-chlorophenol, and 4-chlorophenol presented interferences. The results were validated by 2,4-DCP determination in spiked tap water.  相似文献   

7.
《中国化学快报》2021,32(8):2529-2533
Bimetallic nanoparticles modified hollow-structured nanoporous carbons (NPCs) have been fabricated via a convenient one-step carbonizing strategy derived from covalent organic framework. The Pd/Fe/NPCs, Pt/Fe/NPCs and Rh/Fe/NPCs were obtained and can be used as Fenton-like catalysts with good stability and reusability. The catalytic activity was evaluated by the degradation of 2,4-dichlorophenl (2,4-DCP). These fabricated bimetallic catalysts exhibited much higher catalytic activity than Fe/NPCs at room temperature. The enhancement of catalytic ability was benefited from synergetic catalytic effect of bimetallic nanoparticles and accelerated mass transfer of hollow structure. Additionally, the enhanced catalytic mechanism of bimetallic catalysts was studied in detail and the reasonable reaction pathway was proposed. Besides, the bimetallic catalysts were successfully used for degradation of 2,4-DCP in actual industrial wastewater and the removal efficiency could reach 74.3% within 120 min, which demonstrated the promising potential application of bimetallic catalysts in the removal of pollutants in environment.  相似文献   

8.
This study investigated nitrate removal using biological denitrification by the iron-reducing bacteria strain CC76 combined with zero-valent iron (ZVI) in simulated groundwater under anaerobic conditions. The mechanism of nitrate reduction as well as the process of iron cycling by strain CC76 and ZVI were studied. During growth experiments, the strain CC76 showed the ability to utilize Fe2+ (electron donor) produced from the stimulated corrosion of ZVI for the nitrate removal. ZVI exerted inhibitive effects on the growth of strain CC76 in the early stage. However, the strain CC76 was able to tolerate the presence of ZVI in the long term. Moreover, three factors (temperature, initial pH, and ZVI concentration) were selected as effective factors and were optimized using a central composite design of response surface methodology. Based on the statistical analysis, a temperature of 30.44 °C, initial pH of 6.11, and ZVI concentration of 5.89 g/L were determined to be the optimum values. The effect of Fe2+/ZVI ratio was also explored and compared with ZVI alone, a certain amount of a mixture of Fe2+ and ZVI showed a higher nitrate removal ability. Moreover, scanning electron microscopy and X-ray diffraction analyses showed the corrosion of ZVI occurred after reaction in the autotrophic denitrification system.  相似文献   

9.
在2,4-二氯苯酚(2,4-DCP)存在下, 在金电极表面自组装邻氨基苯硫酚(oATP)并电聚合oATP/金纳米粒子, 制得2,4-DCP印迹复合膜电化学传感器.采用循环伏安法和交流阻抗技术对传感器制备过程进行了表征, 以K3Fe(CN)6为探针, 间接对2,4-DCP进行定量分析.结果表明, 2,4-DCP在5.0×10-8~1.2×10-4 mol/L 浓度范围内与K3Fe(CN)6示差脉冲伏安曲线的峰电流呈线性关系(R2=0.9964), 检出限为1.5×10-8 mol/L(S/N=3).该印迹传感器可在几种氯代酚干扰下选择性测定2,4-DCP.利用该传感器对环境水样进行加标回收检测, 回收率为95.2%~109.3%.  相似文献   

10.
纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用   总被引:15,自引:0,他引:15  
 利用化学沉淀法制备了纳米级Fe和纳米级Pd/Fe双金属催化剂,研究了它们对2,4-二氯苯酚(2,4-DCP)还原脱氯的催化性能. 结果表明,纳米级颗粒具有较高的比表面积和表面反应活性,其BET比表面积可达12.4 m2/g,当Pd/Fe用量为6 g/L时,2,4-DCP脱氯率达到90%以上. 脱氯效率与pH值、温度、钯含量和Pd/Fe投加量等因素有关. 2,4-DCP在脱氯过程中先生成2-氯苯酚和4-氯苯酚,最终生成苯酚,而少量的2,4-DCP可直接降解成苯酚.  相似文献   

11.
The sorption of β-cyclodextrin polymer (β-CDP) and γ-cyclodextrin polymer (γ-CDP) toward 2,4-dichlorophenol (2,4-DCP) in aqueous solutions was investigated. The influence of sorption conditions including initial 2,4-DCP concentration, contact time and pH on sorption capability were discussed. Their sorption behaviors for 2,4-DCP were conducted and it was found the sorption kinetics followed the Ho and McKay equation and the film diffusion was the rate-determined step. The sorption isotherm can be correlated to Freundlich model and the sorption capacity on β-CDP was much larger than that on γ-CDP. The maximum sorption capacity of 2,4-DCP for β-CDP was measured to be 0.16 mmol/g with the initial concentration at 0.67 mmol/L at 288 K. The CDPs were easily recovered by ethanol as washing solvent and they could be used as a kind of recyclable sorbents.  相似文献   

12.
孙建芝  贺晖  刘书慧 《色谱》2014,32(3):256-262
建立了分散液液微萃取(DLLME)-反相液液微萃取(RP-LLME)-扫集-胶束电动色谱富集模型,并用于红酒中五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)3种氯酚的测定。实验考察了两步微萃取的萃取参数对氯酚萃取率的影响和样品分离富集的电泳条件。最佳萃取条件DLLME为:3.5 mL红酒(pH 3.0,120 g/L NaCl),300 μL正己烷(萃取剂);RP-LLME为:25 μL 0.16 mol/L NaOH(萃取剂)。最佳电泳条件:25 mmol/L NaH2PO4,100 mmol/L十二烷基硫酸钠(SDS),30%(v/v)乙腈,pH 2.3;分离电压-15 kV;样品基质为80 mmol/L NaH2PO4;压力进样20 s×20.67 kPa(3 psi)。PCP和TCP的线性范围为0.5~100 μg/L(r≥0.9910),DCP的线性范围为1.5~80 μg/L(r=0.9851)。3种分析物的检出限(S/N=3)为0.035~0.114 μg/L,加标回收率为75.2%~104.7%,相对标准偏差≤6.17%。该方法富集倍数高、灵敏度高、重现性好、分析速度快,可为不同样品基质中痕量氯酚污染物及某些弱酸性有机污染物测定提供参考。  相似文献   

13.
罗碧容  万旭  邓星亮  余媛媛  谢振伟 《色谱》2016,34(5):473-480
建立了上清液直接进样-高效液相色谱-串联质谱同时测定废水中18种酚类污染物的分析方法。取5.0 mL水样置于具塞离心管中,加氨水调节pH≥12,摇匀,加入1.0 mL二氯甲烷-正己烷(2: 1, v/v)混合溶液并振摇5 min, 4000 r/min离心5 min,用玻璃针筒抽取上清液并经0.22 μ m聚四氟乙烯滤膜过滤,用甲酸调节水样pH至中性;然后采用Thermo Hypersil ODS柱(100 mm×2.1 mm, 5.0 μ m)分离,以甲醇-0.01 mol/L甲酸铵-甲酸水溶液(pH 4.0)为流动相进行梯度洗脱,流速0.2 mL/min,柱温30℃,进样10 μ L,电喷雾负离子电离(ESI-)模式、多反应监测(MRM)模式进行检测,外标法定量。18种酚类化合物的峰面积与其质量浓度在一定浓度范围内均呈良好的线性关系(r2≥0.9991),方法检出限为0.10~0.88 μ g/L。测定低、中、高加标浓度的样品,18种酚类化合物的相对标准偏差为2.5%~9.9%(n=6);火工药剂废水与石油化工废水样品中的平均加标回收率为68.7%~118%(n=3)。此方法操作简单,灵敏度高,干扰小,分析速度快,可适用于环境废水中18种酚类污染物的同时分析。  相似文献   

14.
Montmorillonite-supported nanoscale zero-valent iron (M-nZVI) was synthesized by sodium borohydride reduction and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy (FE-SEM). The interaction of uranium with M-nZVI was studied using batch technique under different experimental conditions such as pH, ionic strength, initial U(VI) concentration, solid-to-liquid ration (m/V), and temperature. The presence of montmorillonite decreased the aggregation while increased the specific surface area (SSA) of the iron nanoparticles. The SSA for as-synthesized M-nZVI was 91.42 m2/g, higher than 26.60 and 10.23 m2/g for nZVI and montmorillonite, respectively. The removal efficiency of U(VI) using M-nZVI was significantly affected by the pH of the aqueous solution, whereas it was slightly affected by ionic strength and temperature. The isoelectric point of M-nZVI was at pH 5.6; however the results indicated that the optimum removal efficiency of U(VI) using M-nZVI was achieved at a pH range 3.0–5.0. The experiments with aqueous solution containing 100 μg/L of U(VI) showed that the removal efficiency of the as-synthesized M-nZVI was about 978 μg/g at pH 3.0. These results show that M-nZVI has a potential as a novel material for removing U(VI) from aqueous solution.  相似文献   

15.
Phenol, 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were baseline separated by using a homemade microchip CE with an end-channel amperometric detector where a 50 microm Pt microdisk working electrode (WE) and a Pt cathode were integrated onto the microchip itself. Separation parameters such as injection time and voltage, pH of the buffer, online pretreatment condition for WE, reproducibility, and detection potential were investigated. Under the selected separation conditions, the linear ranges for phenol, 2,4-DCP, and 2,4,6-TCP were 2-200, 4-400, and 4-400 microM, respectively. The LODs were 0.4, 0.5, and 0.7 microM for phenol, 2,4-DCP, and 2,4,6-TCP, respectively (S/N = 3). The standard addition method was successfully applied to the analysis of landfill leachate samples and the concentration of phenol in the landfill leachate samples was measured to be 0.32 and 0.21 mM, respectively. The recoveries were in the range of 85-103% and corresponding RSDs were less than 5.5%.  相似文献   

16.
3,4- and 3,5-Dichloroanilines (DCAs) are common markers of some non-persistent pesticides, e.g. linuron, diuron, vinclozolin, and iprodione. The general population may be exposed to these DCAs and/or their precursors mainly through diet. Since adverse effects on human health, such as endocrine disruption, have been reported, biological monitoring is essential for exposure assessment both of occupationally exposed subjects and of the general population. A highly sensitive and selective gas chromatography/mass spectrometry (GC/MS) method has been developed for the determination of 3,4- and 3,5-DCAs in urine using 4-chloro-2-methylaniline as an internal standard. The selected ion monitoring (SIM) mode was employed for quantitation of the analytes. The sample treatment procedure is simple and fast and no derivatization is required. The overall method was validated including uncertainty measurement. The limit of detection (LOD) and the lower limit of quantitation (LLOQ) were determined to be 0.005 and 0.010 microg/L for both analytes. The method was then applied to the establishment of reference values for a population group living in a rural area of central Italy (Novafeltria, Marche). A total of 151 out of 153 samples were found to be positive for 3,5-DCA, and 81.7% were positive for 3,4-DCA. For this group, 3,4-DCA levels ranged from 0.01 to 6.19 microg/L, while 3,5-DCA urinary concentrations were between 0.02 and 6.71 microg/L.  相似文献   

17.
The fungicides vinclozolin and iprodione are widely used in agriculture. These pesticides are dicarboximide fungicides containing the common moiety 3,5-dichloroaniline (3,5-DCA). It has been suggested that low-level exposures to such compounds may be associated with adverse health effects such as endocrine disruption. In this study a method using liquid chromatography/triple quadrupole mass spectrometry (LC/MS/MS) was developed for the analysis of 3,5-DCA as a biomarker of exposure to these fungicides in human urine. The urine samples were treated by basic hydrolysis to degrade the fungicides, their metabolites and conjugates to 3,5-DCA. The 3,5-DCA was then extracted using toluene and derivatized using pentafluoropropionic anhydride (PFPA). Analysis of the derivative was carried out using selected reaction monitoring (SRM) in the negative ion mode. Quantification of the derivative was performed using [(13)C(6)]-labeled 3,4-DCA as an internal standard with good precision and linearity in the range 0.1-200 ng/mL urine. The limit of detection was determined to be 0.1 ng/mL. The metabolites in urine were found to be stable during storage at -20 degrees C. To validate 3,5-DCA as a biomarker the method was applied in a human experimental exposure to iprodione and vinclozolin. Two healthy volunteers received 200 microg single oral doses of each pesticide followed by urine sampling during 72-120 h post-exposure. Between 78-107% of the dose was recovered as 3,5-DCA in the urine after exposure.  相似文献   

18.
A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0–100 μmol L−1 with a detection limit of 1.6 μmol L−1. Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2–111.8%, showing a promising potential in practical application.  相似文献   

19.
Liquid phase catalytic oxidation of chlorophenols (CPs) was carried out over Cu-Al hydrotalcite/clay composite at ambient temperature and pressure using hydrogen peroxide as oxidant. The results showed that the catalyst had high catalytic activity, with complete oxidation of 4-CP within 40 min at 40 °C. The content and position of chlorine on the aromatic ring had significantly different effects on the oxidation rate of CPs, with the rate sequence of phenol > monochlorophenol (MCP) > dichlorophenol (DCP) > trichlorophenol (TCP), 3-CP > 2-CP > 4-CP, and 3,5-DCP > 3,4-DCP > 2,5-DCP > 2,4-DCP > 2,6-DCP. This was ascribed to the interactions among σ-electron withdrawing conductive effect, π-electron donating conjugative effect, and steric hindrance effect of chlorine. It was evidenced that the catalytic peroxide oxidation of CPs in the first step was selective and rate-limiting, where chlorinated 1,4-benzoquinones formed.  相似文献   

20.
芦智远  王冰  田娜  张耀武  张新宇  刘佳  吕岩 《色谱》2019,37(10):1053-1058
建立了方便面皮复合包装袋中2,4-二氨基甲苯迁移量的离子交换固相萃取-气相色谱-质谱联用检测方法。样品用4%(v/v)乙酸溶液浸泡,然后采用MCX混合型阳离子交换柱富集净化,以5.0 mL水淋洗小柱,用3.0 mL 5%(v/v)氨化甲醇洗脱样品,洗脱液经过溶剂交换,七氟丁酸酐衍生后,用气相色谱-质谱联用仪对目标物进行检测,外标法定量。2,4-二氨基甲苯在1~50 μg/L范围内,线性相关系数(r)为0.9991,检出限(S/N=3)为0.2 μg/L,定量限(S/N=10)为0.6 μg/L,回收率在89.0%~94.2%之间,相对标准偏差为1.9%~3.6%。该方法的前处理过程无需调节提取液的pH值,也不需要液液萃取,大幅简化了前处理过程,降低了有机溶剂的消耗,具有操作便捷、结果准确的优点,适用于方便面皮复合包装袋中2,4-二氨基甲苯迁移量的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号