首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Sessile drop experiments were performed on molten indium antimonide on clean quartz (fused silica) surfaces. A cell was constructed through which argon, helium, oxygen, hydrogen or a mixture of these was flowed at 600 °C. Some of the InSb was doped with 0.1% Ga. The surface tension σ of oxide-free molten InSb was smaller in Ar than in He, may have increased with increasing O2 in the gas, and was not influenced by Ga or H2. The contact angle θ on silica was higher in the presence of Ar, was lowered by O2, and was not influenced by H2 or Ga. The work of adhesion W and the surface energy σsv of the silica were higher in He than in Ar. The surface remained free of solid oxide only in flowing gas containing 0.8 ppm O2. This behavior is attributed to reaction of O2 at the surface of the melt to form In2O gas. When solid oxide formed on Ga-doped material, it was strongly enriched in Ga, with the Ga/In ratio increasing with the concentration of O2 in the gas.

Examination of published sessile-drop results for liquid metals and semiconductors on silica revealed that W and σsv were highest for reactive melts, in which SiO2 dissolves. For non-reactive melts, W and σsv were lower and θ higher in a gas than in a vacuum, regardless of whether the experiments had been carried out in sealed ampoules, a flowing gas, or dynamic vacuum. The implication is that the surface of silica was different in a vacuum than in a gas at 1 bar.  相似文献   


2.
Zinc oxide (ZnO) quantum dots (QDs) were fabricated on silicon substrates by metal organic chemical vapor deposition. Formation of QDs is due to the vigorous reaction of the precursors when a large amount of precursors was introduced during the growth. The size of the QDs ranged from 3 to 12 nm, which was estimated by high-resolution transmission electron microscopy. The photoluminescence measured at 80 K showed that the emission of QDs embedded film ranged from 3.0 to 3.6 eV. The broad near-band-edge emission was due to the quantum confinement effect of the QDs.  相似文献   

3.
Using single crystalline Si wafer substrates, ion-assisted deposition (IAD) has recently been shown [J. Crystal Growth 268 (2004) 41] to be capable of high-quality high-rate epitaxial Si growth in a non-ultra-high vacuum (non-UHV) environment at low temperatures of about 600 °C. In the present work the non-UHV IAD method is applied to planar borosilicate glass substrates featuring a polycrystalline silicon seed layer and carefully optimised. Using thin-film solar cells as test vehicle, the best trade-off between various contamination-related processes (seed layer surface as well as bulk contamination) is determined. In the optimised IAD process, the temperature of the glass substrate remains below 600 °C. The as-grown Si material is found to respond well to post-growth treatments (rapid thermal annealing, hydrogenation), enabling respectable open-circuit voltages of up to 420 mV under 1-Sun illumination. This proves that the non-UHV IAD method is capable of achieving device-grade polycrystalline silicon material on seeded borosilicate glass substrates.  相似文献   

4.
Gold single microcrystals have been fabricated by electrochemical growth in a silica gel. Structural characterization of the single crystals by backscatter electron diffraction showed a preferred orientation of Au (1 1 1) and a minor orientation of Au (1 0 0). In addition, the influence of additives on the nucleation and growth of gold microcrystals has been studied. It was found that the inclusion of chemical additives in the growth solutions altered the characteristics of the gold crystals. Possible mechanisms for nucleation and growth of these crystals are discussed.  相似文献   

5.
Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B–P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.  相似文献   

6.
We have been developing a zone growth method for an InxGa1−xAs single crystal with a uniform InAs composition, using an InGaAs source, InGaAs melt and InGaAs seed charged in a crucible. This time, we modified the zone growth method to increase the length of an InGaAs zone crystal. A gap created between the wall around the InGaAs source and the inner wall of the crucible effectively prevents the interruption in normal zone growth because it changes the directions of heat current in the source. In addition, we found that it is very important for single crystal growth that no rotation of the crucible takes place during zone growth, because the degree of mixing caused by melt convection is reduced. The zone growth region of the obtained InGaAs crystal is almost exclusively of single-crystal-type, and it is about 26 mm long, which is 1.5 times the region length of the zone single crystal reported previously. We believe that a longer growth period could have further increased the length of our zone crystal, because some of the source remained. The InAs composition (x) of the zone crystal is greater than 0.3, and the crystal diameter is 15 mm.  相似文献   

7.
X.M. Liu  Y.C. Zhou   《Journal of Crystal Growth》2004,270(3-4):527-534
Large quantities of ZnO nanorods have been synthesized by the seed-mediated method in the presence of polyethylene glycol at 90 °C. The products are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The as-grown ZnO nanorods are uniform with a diameter of 40–70 nm and length about 2 μm. The nanorods grew along the [0 0 1] direction. Possible roles of ZnO seeds and polymer in the growth of ZnO nanorods are also discussed.  相似文献   

8.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.  相似文献   

9.
Deposition of sub-monolayer silicon on SiO2/Si(1 0 0) greatly facilitates nucleation in subsequent thermal chemical vapor deposition (CVD) of silicon nanoparticles. Sub-monolayer seeding is accomplished using silicon atoms generated via disilane decomposition over a hot tungsten filament. The hot-wire process is nonselective towards deposition on silicon and SiO2, is insensitive to surface temperature below 825 K, and gives controlled coverages well below 1 ML. Thermal CVD of nanoparticles at 1×10−4 Torr disilane and temperatures ranging from 825 to 925 K was studied over SiO2/Si(1 0 0) surfaces that had been subjected to predeposition of Si or were bare. Seeding of the SiO2 surface with as little as 0.01 ML is shown to double the nanoparticle density at 825 K, and densities are increased twenty fold at 875 K after seeding the surface with 30% of a monolayer.  相似文献   

10.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

11.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

12.
Pd thin films, grown on Si-rich 6H-SiC(0 0 0 1) substrates, were studied by atomic force microscopy, electron diffraction and high-resolution transmission electron microscopy. It is concluded that the growth is successful only when all the growth process takes place at room temperature. Under these conditions a very good epitaxial growth of Pd is achieved, despite the large misfit (about 8.6%) between Pd and the substrate and the existence of a semi-amorphous layer between the thin film and the substrate. A large number of twins appear in these films.  相似文献   

13.
The growth of ZnO single crystals and crystalline films by solvothermal techniques is reviewed. Largest ZnO crystals of 3 inch in diameter are grown by a high-pressure medium-temperature hydrothermal process employing alkaline-metal mineralizer for solubility enhancement. Structural, thermal, optical and electrical properties, impurities and annealing effects as well as machining are discussed. Poly- and single-crystalline ZnO films are fabricated from aqueous and non-aqueous solutions on a variety of substrates like glass, (100) silicon, -Al2O3, Mg2AlO4, ScAlMgO4, ZnO and even some plastics at temperatures as low as 50 °C and ambient air conditions. Film thickness from a few nanometers up to some tens of micrometers is achieved. Lateral epitaxial overgrowth of thick ZnO films on Mg2AlO4 from aqueous solution at 90 °C was recently developed. The best crystallinity with a full-width half-maximum from the (0002) reflection of 26 arcsec has been obtained by liquid phase epitaxy employing alkaline-metal chlorides as solvent. Doping behavior (Cu, Ga, In, Ge) and the formation of solid solutions with MgO and CdO are reported. Photoluminescence and radioluminescence are discussed.  相似文献   

14.
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters (Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol−1, respectively.  相似文献   

15.
Comprehensive microstructures of 7% cobalt-doped rutile TiO2 thin films grown on c-plane sapphire by pulsed laser deposition were characterized using transmission electron microscopy (TEM). The effects of oxygen pressure during growth on the Co distribution inside the films were investigated, and the detailed growth mechanism of both TiO2 and TiO2+Co was discussed. The similar oxygen sublattices and low mismatch between (1 0 0) rutile and c-plane sapphire favors the rutile phase. However, the three-fold symmetry of the substrate surface resulted in three rutile domain orientation variants, and they grow adjacent to each other. Cobalt was found to precipitate out as nanocrystals inside the TiO2 matrix as the growth pressure of oxygen was decreased. At 0.05 mTorr oxygen pressure, almost all of the Co segregates into crystallographically aligned nanocrystals with a particle size of 4.4±0.15 nm. All the samples have magnetic coercivity at room temperature. The magnetic moment per Co atom increased with decreased oxygen pressure, suggesting that the Co that replaced the Ti2+ in the TiO2 lattice does not have a large magnetic moment.  相似文献   

16.
The influence of AlN nucleation layer (NL) growth conditions on the quality of GaN layer deposited on (0 0 0 1) sapphire by organometallic chemical vapor phase epitaxy (OMVPE) has been investigated by X-ray diffraction, atomic force microscopy and transmission electron microscopy. Growth pressure, temperature and time were varied in this study. Results indicate that there exists an optimal thickness of the NL is required for optimal growth. Both thin and thick NLs are not conducive to the growth of high-quality GaN layers. Arguments have been developed to rationalize these observations.  相似文献   

17.
In this paper, the technique of environmental scanning electron microscopy (ESEM) has been employed to investigate the surface defects of the (1 1 1) appearing face in 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 (PZN–8%PT) crystals. From the ESEM images, we succeeded in observing and studying the growth hillocks and etch pits, low-angle grain boundaries, and sub-grain boundaries in (1 1 1) face, which were related to the generation of dislocation and stacking faults, respectively. On the other hand, an image of a unique multi-layer lamellar structure and fine step structure obtained in the (1 1 1) face reveals that the dominant fast growth mechanism of PZN–8%PT crystal grown by the flux method is a sub-step mechanism, unlike the screw dislocation growth mechanism.  相似文献   

18.
Ga2O3 nanobelts were synthesized by gas reaction at high temperature in the presence of oxygen in ammonia. X-ray diffraction and chemical microanalysis revealed that the nanostructures were Ga2O3 with the monoclinic structure. Electron microscopy study indicated the nanobelts were single crystalline with broad (0 1 0) crystallographic planes. The nanostructures grew anisotropically with the growth direction of . Statistical analysis of the anisotropic morphology of the nanobelts and electron microscopy investigation of the nanobelt tips indicated that both vapor–solid and vapor–liquid–solid mechanisms controlled the growth process. The anisotropic nature of crystallographic morphology is explained in terms of surface energy.  相似文献   

19.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

20.
Lateral, single-crystalline silicon nanowires were synthesized using chemical vapor deposition catalyzed by gold nanoparticles deposited on one of the vertical {1 1 1} sidewalls of trenches etched in Si(0 1 1) substrates. Upon encountering the opposing sidewalls of the trenches, the lateral nanowires formed a mechanically strong connection. The bridging connection at the opposing sidewall was observed using high-resolution transmission electron microscopy (TEM) to be epitaxial and unstrained silicon-to-silicon. Using energy-dispersive X-ray spectroscopy in TEM, gold could not be detected at the interface region where the nanowires formed a connection with the opposing sidewall silicon deposit but was detected on the surface adjacent to the impingement region. We postulate that a silicon-to-silicon connection is formed as the gold–silicon liquid eutectic is forced out of the region between the growing nanowire and the opposing sidewall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号