首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present work we demonstrate how to realize a 1D closed optical lattice experimentally, including a tunable boundary phase twist. The latter may induce "persistent currents" visible by studying the atoms' momentum distribution. We show how important phenomena in 1D physics can be studied by physical realization of systems of trapped atoms in ring-shaped optical lattices. A mixture of bosonic and/or fermionic atoms can be loaded into the lattice, realizing a generic quantum system of many interacting particles.  相似文献   

2.
In this article, we discuss a method to control the long-range interactions between bosons in a three-dimensional Bose-Fermi mixture with the help of optical lattices on fermions. We find the range and the peaked momentum of the fermion-mediated interactions can be tuned by the optical lattice depth and the fermion density. If the fermion density is close to half-filling, roton excitations can be generated with weak Bose-Fermi interactions. Further, if the fermions are not exact at half-filling, multi-roton structure may emerge, implying competing density orders. Therefore, tuning the lattice depth and the fermion density in a Bose-Fermi mixture serves as an effective way to control the interaction range and resonant momentum between bosons.  相似文献   

3.
We analyze the stability of superfluid currents in a system of strongly interacting ultracold atoms in an optical lattice. We show that such a system undergoes a dynamic, irreversible phase transition at a critical phase gradient that depends on the interaction strength between atoms. At commensurate filling, the phase boundary continuously interpolates between the classical modulation instability of a weakly interacting condensate and the equilibrium quantum phase transition into a Mott insulator state at which the critical current vanishes. We argue that quantum fluctuations smear the transition boundary in low dimensional systems. Finally we discuss the implications to realistic experiments.  相似文献   

4.
Wenliang Liu 《中国物理 B》2022,31(7):73702-073702
Bose-Einstein condensates (BEC) of sodium atoms are transferred into one-dimensional (1D) optical lattice potentials, formed by two laser beams with a wavelength of 1064 nm, in a shallow optical trap. The phase coherence of the condensate in the lattice potential is studied by changing the lattice depth. A qualitative change in behavior of the BEC is observed at a lattice depth of ~ 13.7 Er, where the quantum gas undergoes a transition from a superfluid state to a state that lacks well-to-well phase coherence.  相似文献   

5.
We have shown that the application of modulating the secondary lattice is an efficient route to suppressing the generation of chaotic traveling waves of a Bose-Einstein Condensate with attractive interatomic interaction loaded into a moving optical superlattiee consisting of two lattices. With the Melnikov method, we obtain the optimal value of the relative phase between the two lattice harmonics for the control of chaos. We also find that the regularization route as the potential depth of the secondary lattice is varied and fairly rich, including the period-doubling bifurcations.  相似文献   

6.
《中国物理 B》2021,30(10):100305-100305
We study the possibility of stabilizing a Fulde–Ferrell–Larkin–Ovchinnikov(FFLO) state in an equally populated two-component Fermi gas trapped in a moving two-dimensional optical lattice. For a system with nearly half filling, we find that a finite pairing momentum perpendicular to the moving direction can be spontaneously induced for a proper choice of lattice velocity. As a result, the total pairing momentum is tilted towards the nesting vector to take advantage of the significant enhancement of the density of states.  相似文献   

7.
We have experimentally studied the unstable dynamics of a harmonically trapped Bose-Einstein condensate loaded into a 1D moving optical lattice. The lifetime of the condensate in such a potential exhibits a dramatic dependence on the quasimomentum state. This is unambiguously attributed to the onset of dynamical instability, after a comparison with the predictions of the Gross-Pitaevskii theory. Deeply in the unstable region we observe the rapid appearance of complex structures in the atomic density profile, as a consequence of the condensate phase uniformity breakdown.  相似文献   

8.
It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes.  相似文献   

9.
The dynamical phase transitions in two-dimensional fully frustrated Josephson junction arrays at zero temperature are investigated numerically with the resistively shunted junction model through the fluctuating twist boundary condition. The model is subjected to a driving current with nonzero orthogonal components i x , i y parallel to both axes of the square lattice. We find a roughly lattice size independent phase diagram with three dynamical phases: a pinned vortex lattice phase, a moving vortex lattice phase and a moving plastic phase. The phase diagram shows a direct transition from the pinned vortex to the moving vortex phase and the separation of the pinned vortex and the moving plastic phases. The time-dependent voltages v x and v y are periodic in the moving vortex lattice phase. But they are aperiodic in the moving plastic phase, resulting in non-monotonic characteristics and hysteresis in the current-voltage curves. It is found that the characteristic frequency is twice the time-averaged voltage in the moving vortex phase and around the time-averaged voltage in the plastic flow regime.Received: 29 May 2003, Published online: 2 October 2003PACS: 64.60.Ht Dynamic critical phenomena - 74.25.Sv Critical currents - 74.25.Fy Transport properties  相似文献   

10.
We determine the phase diagram of hard-core bosons on a triangular lattice with nearest-neighbor repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model on a square lattice we find that for densities rho<1/3 or rho>2/3 a supersolid phase is unstable and the transition between a commensurate solid and the superfluid is of first order. At intermediate fillings 1/3相似文献   

11.
We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.  相似文献   

12.
We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices.  相似文献   

13.
We realize a single-band 2D Bose-Hubbard system with Rb atoms in an optical lattice and measure the condensate fraction as a function of lattice depth, crossing from the superfluid to the Mott-insulating phase. We quantitatively identify the location of the superfluid to normal transition by observing when the condensed fraction vanishes. Our measurement agrees with recent quantum Monte Carlo calculations for a finite-sized 2D system to within experimental uncertainty.  相似文献   

14.
The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively, with quantized and with continuous lubricant center-of-mass velocity. The transition, occurring for increasing external driving force F ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.  相似文献   

15.
We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an optical lattice well, respectively. By using standing-wave expansion method, we present symmetric and asymmetric ground state solutions of nonlinear Schrödinger equation (NLSE) with a symmetric double square well potential for attractive nonlinearity. In particular, we study the ground state wave function's properties by changing the depth of potential and atomic interactions (here we restrict ourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal a phase transition of BECs trapped in one-dimensional optical lattice potential.  相似文献   

16.
We predict the robust existence of a novel quantum orbital stripe order in the p-band Bose-Hubbard model of two-dimensional triangular optical lattices with cold bosonic atoms. An orbital angular momentum moment is formed on each site exhibiting a stripe order both in the superfluid and Mott-insulating phases. The stripe order spontaneously breaks time-reversal, lattice translation, and rotation symmetries. In addition, it induces staggered plaquette bond currents in the superfluid phase. Possible signatures of this stripe order in the time of flight experiment are discussed.  相似文献   

17.
An effective action for Bose-Hubbard model with two-and three-body on-site interaction in a square optical lattice is derived in the frame of a strong-coupling approach developed by Sengupta and Dupuis.From this effective action,superfluid-Mott insulator(MI) phase transition,excitation spectrum and momentum distribution for two phases are calculated by taking into account Gaussian fluctuation about the saddle-point approximation.In addition the effects of three-body interaction are also discussed.  相似文献   

18.
We investigate the process of gas trapping by a moving interference lattice formed by laser radiation of nonresonance frequency (the optical gas trapping) with regard for intermolecular collisions. For the transitional regime (when the mean free path of gas molecules λ is less than the lattice period) the energy and momentum transfer from a moving optical lattice to gas is found to realize more intensively than in the case of a free molecular regime. The maximum values of the gas velocity and heating are shown to be determined by the lattice velocity and weakly depend on the laser intensity. The work was supported financially by the “Russian Science Support Foundation” and by the Russian Foundation for Basic Research (Grants Nos. 06-08-00687 and 06-01-22000).  相似文献   

19.
The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.  相似文献   

20.
We demonstrated experimentally that the momentum distribution of cold atoms in dissipative optical lattices is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail distribution at shallow optical potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号