首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have used Auger and electron energy loss spectroscopy to study the effect of temperature on InGaAs and InPO4 grown on InP. The thickness of InPO4 is of about 10 Å whereas that of InGaAs is of about 800 Å. InPO4 is of great interest because it protects InP from loss of stoichiometry when heated to 450 °C. The InGaAs system heated at 450 °C seems to be unstable; metallic indium appears on the surface in conjunction with formation of GaAs.  相似文献   

2.
Surface chemical changes of CaTiO3:Pr3+ phosphor material and their effect on the red emission intensity of the 1D23H4 transition of Pr3+, upon electron beam irradiation are presented. Red emission at 613 nm was obtained upon probing the surface with a 2 keV electron beam. The surface chemical changes and Pr3+ red emission were monitored using an Auger Electron Spectroscopy (AES) and Cathodoluminescence (CL) spectrometer, respectively. The CL intensity decreased with a decrease in O on the surface at 1×10−8 Torr base pressure and decreased with an increase in O on the surface at 1×10−6 Torr O2. The X-ray Photoelectron Spectroscopy (XPS) revealed that CL degradation at 1×10−6 Torr O2 is due to the formation of CaO and CaOx as well as TiO2/Ti2O3 non-luminescent species on the surface.  相似文献   

3.
The electrical properties of the Cu/n-InP and Al/n-InP Schottky barrier diodes (SBDs) with and without the interfacial oxide layer have been investigated by using current-voltage (I-V) measurements. The oxide layer on chemically cleaned indium phosphide (InP) surface has been obtained by exposure to water vapor at 1 ml/min at 200 °C before metal evaporation. The chemical composition of surface oxides grown on the InP is investigated using X-ray photoelectron spectroscopy (XPS). Phosphorus is present as In(PO3)3, InPO4, P2O5 and P4O10. The values of 0.437 ± 0.007 and 0.438 ± 0.003 eV for the barrier height of the reference Cu/n-InP and Al/n-InP SBDs were obtained, respectively. Furthermore, the values of 0.700 ± 0.030 and 0.517 ± 0.023 eV for the barrier height of the oxidized Cu/n-InP and Al/n-InP SBD were obtained, respectively. The transport properties of the metal-semiconductor contacts have been observed to be significantly affected by the presence of the interfacial oxide layer. Devices built on the oxidized surfaces show improved characteristics compared with those built on chemically cleaned surfaces. The chemical reactivity of the metal with oxide and n-InP is important to the formation of the Schottky barriers. The reactive metal Al gave a low barrier height due to the reduction of oxide and reaction with InP. The transmission coefficients for the oxidized Cu/n-InP and Al/n-InP are equal to 2.23 × 10−5 and 4.60 × 10−2, respectively.  相似文献   

4.
The inelastic mean free path (IMFP) of electrons is a basic parameter for surface-sensitive electron spectroscopies (AES, XPS, EELS) in quantitative analyses.Cd1−xMnxTe mixed crystals are currently of great interest due to their magnetic and magneto-optical properties. Since information on electron transport processes in these semimagnetic compounds is scarce, their systematic studies are highly desirable.In the present work, the IMFPs in Cd0.88Mn0.12Te (1 1 0) crystal samples were obtained from EPES with use of the Ni standard in the electron energy range 500-2000 eV. In addition, we also explored the effect of bulk Mn content in the determination of the IMFP. Relative EPES measurements were carried out using the MICROLAB 350 spectrometer. The sample surface was sputter cleaned and amorphized by Ar+ ions. Surface composition of the samples was monitored in situ by XPS and AES. The measured IMFPs were uncorrected for surface excitations and compared with those predicted from the TPP-2M and G-1 formulae. Also, the values of the IMFPs determined here were compared with those evaluated from the expression of Sekine et al. However, accuracy of this expression is rather poor except the case of pure CdTe (x = 0). In general, good agreement was found between the measured IMFPs in Cd0.88Mn0.12Te and the corresponding predicted IMFPs. The root-mean-square deviation from IMFP values predicted from the TPP-2M formula was 1.2 Å. The mean percentage deviation from the TPP-2M IMFPs was 9.3%.  相似文献   

5.
Elastic Peak Electron Spectroscopy (EPES) is used to characterize the H termination of the (1 0 0) diamond surface. Two specific features of the technique make this possible, namely surface sensitivity and the ability to directly detect H. An approach to quantify the H content for the particular spatial distribution involved here is discussed and a measure of H surface coverage is given.  相似文献   

6.
Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor.  相似文献   

7.
The growth and oxidation of a thin film of Ni3Al grown on Ni(1 0 0) were studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and high resolution electron energy loss spectroscopy (EELS). At 300 K, a 12 Å thick layer of aluminium was deposited on a Ni(1 0 0) surface and subsequently annealed to 1150 K resulting in a thin film of Ni3Al which grows with the (1 0 0) plane parallel to the (1 0 0) surface of the substrate. Oxidation at 300 K of Ni3Al/Ni(1 0 0) until saturation leads to the growth of an aluminium oxide layer consisting of different alumina phases. By annealing up to 1000 K, a well ordered film of the Al2O3 film is formed which exhibits in the EEL spectra Fuchs-Kliewer phonons at 420, 640 and 880 cm−1. The LEED pattern of the oxide shows a twelvefold ring structure. This LEED pattern is explained by two domains with hexagonal structure which are rotated by 90° with respect to each other. The lattice constant of the hexagonal structure amounts to ∼2.87 Å. The EELS data and the LEED pattern suggest that the γ-Al2O3 phase is formed which grows with the (1 1 1) plane parallel to the Ni(1 0 0) surface.  相似文献   

8.
Auger electron/X-ray photoelectron and cathodoluminescent (CL) spectroscopic studies were conducted on pulsed laser deposited SrAl2O4:Eu2+,Dy3+ thin films and the correlation between the surface chemical reactions and the decrease in the CL intensity was determined. The Auger electron and the CL data were collected simultaneously in a vacuum chamber either maintained at base pressure or backfilled with oxygen gas. The data were collected when the films were irradiated for 14 h with 2 keV electrons. The CL emission peak attributed to the 4f65d1 → 4f7 transitions was observed at ∼521 nm and the CL intensity of the peaks degraded at different rates in different vacuum conditions. X-ray photoelectron spectroscopy (XPS) data collected from degraded films suggest that strontium oxide (SrO) and aliminium oxide (Al2O3) were formed on the surface of the film as a result of electron stimulated surface chemical reaction (ESSCR).  相似文献   

9.
Nanostructured titanium dioxide (ns-TiO2) films were grown by supersonic cluster beam deposition method. Transmission electron microscopy demonstrated that films are mainly composed by TiO2 nanocrystals embedded in an amorphous TiO2 phase while their electronic structure was studied by photoemission spectroscopy. The cluster assembled ns-TiO2 films are expected to exhibit several structural and chemical defects owing to the large surface to volume ratio of the deposited clusters. Ultraviolet photoemission spectra (hv = 50 eV) from the valence band unveil the presence of a restrained amount of surface Ti 3d defect states in the band gap, whereas Ti 2p core level X-ray photoelectron (hv = 630 eV) spectra do not manifestly disclose these defects.  相似文献   

10.
Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Photoelectron Yield Spectroscopy (PYS) measurements have been used to monitor the interaction of gold (Au) deposits on InSe/Si(1 1 1) substrate. Au has been sequentially deposed under ultra-high vacuum onto 40 Å-thick film of layered semiconductor InSe which is epitaxially grown by molecular beam epitaxy (MBE) on a Si(1 1 1)1 × 1-H substrate and kept at room temperature. Au coverage varies from 0.5 monolayer to 20 monolayers (ML) (in terms of InSe atomic surface plane: 1 ML = 7.2 1014 at/cm2) which is corresponding to 1.30 Å of Au-metal. The Au/InSe/Si(1 1 1) system was characterized as function of Au deposit, we noticed an interaction at room temperature starts as an apparent intercalation process until 5 ML. Beyond this dose Au islands begin to form on the sample surface without interaction with InSe substrate, thus the interface is far from to be a simple junction Au-InSe.  相似文献   

11.
Tb3+-doped Sr3(PO4)2 phosphor was prepared by a sol-gel combustion method. A trigonal structure having Sr and O atoms occupying two different lattice sites were obtained. Scanning Auger nanoprobe was used to analyze the morphology of the particles. Photoluminescence (PL) and cathodoluminescence (CL) properties of Sr3(PO4)2:Tb powder phosphors were evaluated and compared. In addition, the CL intensity degradation of Sr3(PO4)2:Tb was evaluated when the powders were irradiated with a beam of electrons in a vacuum chamber maintained at an O2 pressure of 1 × 10−6 Torr or a background pressure of 1 × 10−8 Torr O2. The surface chemical composition of the degraded powders, analyzed by X-ray photoelectron spectroscopy (XPS), suggests that new compounds (metal oxides) of strontium and phosphorous were formed on the surface. It is most likely that these compounds contributed to the CL intensity degradation of the Sr3(PO4)2:Tb phosphors. The CL properties and possible mechanism by which the new metal oxides were formed on the surface due to a prolonged electron beam irradiation are discussed.  相似文献   

12.
The planar high index Si(5 5 12) surface consists of trenches formed by the several proximal surface planes, that can be employed as templates for the adsorption of low dimensional nanostructures. This paper reports the results of an extensive UHV study of the adsorption of Sb, in the sub-monolayer coverage regime, onto the Si(5 5 12) surface. The evolution of the surface phases, surface morphology and electronic structure is monitored by Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Electron Energy Loss Spectroscopy (EELS). A careful control of substrate temperatures and Sb coverages formed at a low flux rate of 0.06 ML/min enable us to extract a complete adsorption phase diagram of the important interface, for the first time. The phase diagram clearly demonstrates the conversion of the large Si(5 5 12) unit cell into facets of planes of smaller (2 2 5), (3 3 7) and (1 1 3) base units. The study also reveals the formation of various superstructural phases formed by steering the kinetic parameters.  相似文献   

13.
The incorporation behaviour of phosphorus (P2) during growth by molecular beam epitaxy of InP thin films on InP(0 0 1) substrates has been studied in situ by reflection high energy electron diffraction. The incorporation coefficient of P2 decreases from 0.94 at 360 °C to 0.54 at 470 °C. This behaviour is attributed to the increasing fraction of the incident P2 flux that desorbs from the surface at higher temperatures and does not contribute to layer growth. The low- and temperature-dependent incorporation coefficients imply the need for high P2:In flux ratios and low substrate temperatures for the preparation of smooth InP epitaxial layers.  相似文献   

14.
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy.  相似文献   

15.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

16.
Eu activated Sr5(PO4)3F phosphor powders have been subjected to the electron bombardment at 2 keV (10 μA) at an oxygen pressure of 1×10−6 Torr. The synthesized Sr5(PO4)3F phosphor was identical to the hexagonal apatite structure, with the Sr present at two different sites Cs (S1) and C3 (S2) in the Sr5(PO4)3F host, as inferred from the crystallographic study. Cathodoluminescence (CL) and Auger electron spectroscopy of the phosphor excited by the same electron beam were used to monitor changes in the surface state during prolonged electron bombardment. A direct correlation between the surface reactions and the degradation of the CL brightness was observed. Both C and F were depleted from the surface during electron bombardment. The postulated mechanism for the electron stimulated chemical reactions on the phosphor surface is electron beam dissociation of molecular species to atomic species, which subsequently react with C to form volatile compounds CO2, CH4, etc. and with Sr5(PO4)3F to form a non luminescence layer of metal oxides of Sr and P.  相似文献   

17.
The Fuchs-Kliewer phonon spectrum of single crystal Co3O4(110) has been analyzed by high resolution electron energy loss spectroscopy (HREELS) and the four fundamental phonon losses have been identified at 26.8, 47.5, 71.1 and 84.7 meV (216, 383, 573 and 683 cm−1). This is the first HREELS study reported for an intrinsic spinel single-crystal surface with primary focus on the Fuchs-Kliewer phonon structure. The Co3O4 crystal is first characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED), which establish the composition, cleanliness, and order of the (110) surface. Electron scattering is then used to obtain a series of well-resolved Fuchs-Kliewer phonon spectra over 2.25-14.25 eV incident electron energy range. The variation in phonon intensity with primary beam energy is shown to agree with that predicted by dielectric theory.  相似文献   

18.
Eight emission spectra of pure N2O and N2O + N2 + He mixtures excited by a radio frequency discharge were recorded by Fourier Transform Spectroscopy at a resolution of 0.005 and 0.004 cm−1 in the 4.5 μm region. Results (wavenumbers, band centers, and spectroscopic constants) concerning nine new vibrational transitions which have not been observed before, and which occur between highly excited levels of the bending mode are reported. The derived spectroscopic parameters allow us to reproduce the experimental wavenumbers with an RMS error lower than 4.5 × 10−4 cm−1.  相似文献   

19.
The interaction of ions with matter plays an important role in the treatment of material surfaces. In this paper we study the effect of argon ion bombardment on the InSb surface in comparison with the InP one. The Ar+ ions, accelerated at low energy (300 eV) lead to compositional and structural changes in InP and InSb compounds. The InP surface is more sensitive to Ar+ ions than that of InSb. These results are directly inferred from the qualitative Auger electron spectra (AES) and electron energy loss spectroscopy (EELS) analysis. However, these techniques alone do not allow us to determine with accuracy the disturbed depth in Ar+ ions of InP and InSb compounds. For this reason, we combine AES and EELS with the simulation method TRIM (transport and range of ions in matter) to show the mechanism of interaction between the ions and the InP or InSb and hence determine the disturbed depth as a function of Ar+ energy.  相似文献   

20.
Thin InP layers were grown by metalorganic vapor phase epitaxy on the ternary compound GaAs0.5Sb0.5 lattice matched to InP(1 0 0). The heterojunctions were studied with in situ reflectance anisotropy spectroscopy and benchmarked in ultrahigh vacuum with ultraviolet and X-ray photoelectron spectroscopy and low energy electron diffraction with regard to the sharpness of the interface. During growth of GaAs0.5Sb0.5 an Sb-rich (1×3)-like reconstruction was observed and during stabilization with TBAs an As-rich c(4×4) reconstruction. These two different reconstructions of GaAs0.5Sb0.5(1 0 0), well-known from the binaries GaSb(1 0 0) and GaAs(1 0 0) respectively, were used for preparing InP/GaAs0.5Sb0.5 heterojunctions. The RA spectra of thin heteroepitaxial InP layers were compared to a well-established RA spectrum of MOVPE-prepared homoepitaxial, (2×1)-like reconstructed P-rich InP(1 0 0), that was used as a reference spectrum of a well defined surface. Growing InP on the c(4×4) reconstructed GaAsSb(1 0 0) surface resulted in a significantly sharper interface than InP growth on (1×3) reconstructed GaAsSb(1 0 0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号