首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

2.
吕存琴  凌开成  王贵昌 《催化学报》2009,30(12):1269-1275
 采用广义梯度近似 (GGA) 的密度泛函理论 (DFT) 并结合平板模型, 研究了 CH4 在清洁 Pd(111) 及 O 改性的 Pd(111) 表面发生 C朒 键断裂的反应历程. 优化了裂解过程中反应物、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及反应的活化能. 结果表明, CH4 采用一个 H 原子指向表面的构型在 Pd(111) 表面的顶位吸附, CH3 的最稳定的吸附位置为顶位, OH, O 和 H 的最稳定吸附位置均为面心立方. CH4 在清洁 Pd(111) 表面裂解的活化能为 0.97 eV, 低于它在 O 原子改性 (O 没有参与反应) 的 Pd(111) 表面的活化能 1.42 eV, 说明表面氧原子抑制了 CH4 中 C朒 键的断裂. 当亚表面 O 原子和表面 O 原子 (O 参与反应) 共同存在时, C朒 键断裂的活化能为 0.72 eV, 低于只有表层氧存在时的活化能 (1.43 eV), 说明亚表面的 O 原子对 CH4 分子的活化具有促进作用. CH4 在 O 原子改性的 Pd(111) 表面裂解生成 CH3 和 H, 以及生成 CH3 和 OH 的反应活化能分别为 1.42 和 1.43 eV, 说明 CH4 在 O 原子改性的 Pd(111) 表面发生这两种反应的难易程度相当.  相似文献   

3.
Methanol steam re-forming, catalyzed by Pd/ZnO, is a potential hydrogen source for fuel cells, in particular in pollution-free vehicles. To contribute to the understanding of pertinent reaction mechanisms, density functional slab model studies on two competing decomposition pathways of adsorbed methoxide (CH(3)O) have been carried out, namely, dehydrogenation to formaldehyde and C-O bond breaking to methyl. For the (111) surfaces of Pd, Cu, and 1:1 Pd-Zn alloy, adsorption complexes of various reactants, intermediates, transition states, and products relevant for the decomposition processes were computationally characterized. On the surface of Pd-Zn alloy, H and all studied C-bound species were found to prefer sites with a majority of Pd atoms, whereas O-bound congeners tend to be located on sites with a majority of Zn atoms. Compared to Pd(111), the adsorption energy of O-bound species was calculated to be larger on PdZn(111), whereas C-bound moieties were less strongly adsorbed. C-H scission of CH(3)O on various substrates under study was demonstrated to proceed easier than C-O bond breaking. The energy barrier for the dehydrogenation of CH(3)O on PdZn(111) (113 kJ mol(-)(1)) and Cu(111) (112 kJ mol(-)(1)) is about 4 times as high as that on Pd(111), due to the fact that CH(3)O interacts more weakly with Pd than with PdZn and Cu surfaces. Calculated results showed that the decomposition of methoxide to formaldehyde is thermodynamically favored on Pd(111), but it is an endothermic process on PdZn(111) and Cu(111) surfaces.  相似文献   

4.
The mechanism for the activation of the sigma bonds, the O-H of H2O, C-H of CH4, and the H-H of H2, and the pi bonds, the C[triple bond]C of C2H2, C=C of C2H4, and the C=O of HCHO, at the Pd=X (X = Sn, Si, C) bonds of the model complexes (H2PC2H4PH2)Pd=XH2 5 has been theoretically investigated using a density functional method (B3LYP). The reaction is significantly affected by the electronic nature of the Pd=X bond, and the mechanism is changed depending on the atom X. The activation of the O-H bond with the lone pair electron is heterolytic at the Pd=X (X = Sn, Si) bonds, while it is homolytic at the Pd=C bond. The C-H and H-H bonds without the lone pair electron are also heterolytically activated at the Pd=X bonds independent of the atom X, where the hydrogen is extracted as a proton by the Pd atom in the case of X = Sn, Si and by the C atom in the case of X=C because the nucleophile is switched between the Pd and X atoms depending on the atom X. In contrast, the pi bond activation of C[triple bond]C and C=C at the Pd=Sn bond proceeds homolytically, and is accompanied by the rotation of the (H2PC2H4PH2)Pd group around the Pd-Sn axis to successfully complete the reaction by both the electron donation from the pi orbital to Sn p orbital and the back-donation from the Pd dpi orbital to the pi orbital. On the other hand, the activation of the C=O pi bond with the lone pair electron at the Pd=Sn bond has two reaction pathways: one is homolytic with the rotation of the (H2PC2H4PH2)Pd group and the other is heterolytic without the rotation. The role of the ligands controlling the activation mechanism, which is heterolytic or homolytic, is discussed.  相似文献   

5.
The decomposition of methanol on the Ni(111) surface has been studied with the pseudopotential method of density functional theory-generalized gradient approximation (DFT-GGA) and with the repeated slab models. The adsorption energies of possible species and the activation energy barriers of the possible elementary reactions involved are obtained in the present work. The major reaction path on Ni surfaces involves the O-H bond breaking in CH(3)OH and the further decomposition of the resulting methoxy species to CO and H via stepwise hydrogen abstractions from CH(3)O. The abstraction of hydrogen from methoxy itself is the rate-limiting step. We also confirm that the C-O and C-H bond-breaking paths, which lead to the formation of surface methyl and hydroxyl and hydroxymethyl and atom hydrogen, respectively, have higher energy barriers. Therefore, the final products are the adsorbed CO and H atom.  相似文献   

6.
Infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO + NO reaction over Pd(110) and Pd(111) surfaces were carried out. Kinetics of the CO + NO reaction were studied over Pd(110) using a molecular-beam reaction system in the pressure range of 10-2-10-1 Torr. The activity of the CO + NO reaction on Pd(110) was much higher than that of Pd(111), which was quite different from the result of other experiments under a higher pressure range. On the basis of the experimental data on the dependence of the reaction rate on CO and NO pressures and the reaction rate constants obtained by using a reaction model, the coverage of NO, CO, N, and O was calculated under various flux conditions. From the analysis of IR emission spectra in the CO + O2 reaction on Pd(110) and Pd(111), the antisymmetric vibrational temperature (TVAS) was seen to be higher than the bending vibrational temperature (TVB) on Pd(110). In contrast, TVB was higher than TVAS on Pd(111). These behaviors suggest that the activated complex for CO2 formation is more bent on Pd(111) than that on Pd(110), which is reflected by the surface structure. Both TVB and TVAS for the CO + O2 reaction on Pd(110) and Pd(111) increased gradually with increasing surface temperature (TS). On the other hand, in the case of the CO + NO reaction on Pd(110) and Pd(111), TVAS decreased and TVB increased significantly with increasing TS. TVB was lower than TVAS at lower TS, while TVB was higher than TVAS at higher TS. Comparison of the data obtained for the two reactions indicates that TVB in the CO + NO reaction on Pd(110) at TS = 800 and 850 K is much higher than that in the CO + O2 reaction on Pd(110).  相似文献   

7.
In this work the permeation and desorption of hydrogen (deuterium) from potassium-modified Pd(111) and polycrystalline palladium surfaces have been studied in the temperature range from 350 to 523 K. Time-of-flight spectroscopy has been used to determine the translational energy distributions of associatively desorbing H(2)(D(2)) molecules as a function of the potassium coverage and additional isotropic O(2) and CO background pressures. It turned out that the energy distribution of the hydrogen desorption flux is thermalized for the clean Pd surfaces but hyperthermal for the potassium-covered surfaces. The activation barrier for adsorption was found to increase with the potassium coverage but to decrease again in the presence of coadsorbates such as O(2) or CO. Especially by choosing different isotropic CO pressures, the effective desorption barrier for hydrogen could be reversibly decreased and increased, which resulted in the equivalent changes of the mean kinetic energies of the desorbing H(2) molecules.  相似文献   

8.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

9.
Introduction Atom adsorption on transition metal surfaces has attracted special attention as a base for understanding the fundamental processes of oxidative catalysis. Particularly interesting is the adsorption and diffusion of oxygen on well-defined metal surfaces. An oxygen covered palladium surface, for example, plays a central role in several important reactions such as oxidation of carbon monoxide and ammonia. In particular, the (100), (111), (110) surfaces and the interactions with oxyge…  相似文献   

10.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程.结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低.在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定.在各加氢脱硫过程中,反应总体均放出热量.对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤.此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

11.
Water-oxygen interactions and CO oxidation by water on the oxygen-precovered Au(111) surface were studied by using molecular beam scattering techniques, temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. Water thermally desorbs from the clean Au(111) surface with a peak temperature of approximately 155 K; however, on a surface with preadsorbed atomic oxygen, a second water desorption peak appears at approximately 175 K. DFT calculations suggest that hydroxyl formation and recombination are responsible for this higher temperature desorption feature. TPD spectra support this interpretation by showing oxygen scrambling between water and adsorbed oxygen adatoms upon heating the surface. In further support of these experimental findings, DFT calculations indicate rapid diffusion of surface hydroxyl groups at temperatures as low as 75 K. Regarding the oxidation of carbon monoxide, if a C (16)O beam impinges on a Au(111) surface covered with both atomic oxygen ( (16)O) and isotopically labeled water (H 2 (18)O), both C (16)O (16)O and C (16)O (18)O are produced, even at surface temperatures as low as 77 K. Similar experiments performed by impinging a C (16)O beam on a Au(111) surface covered with isotopic oxygen ( (18)O) and deuterated water (D 2 (16)O) also produce both C (16)O (16)O and C (16)O (18)O but less than that produced by using (16)O and H 2 (18)O. These results unambiguously show the direct involvement and promoting role of water in CO oxidation on oxygen-covered Au(111) at low temperatures. On the basis of our experimental results and DFT calculations, we propose that water dissociates to form hydroxyls (OH and OD), and these hydroxyls react with CO to produce CO 2. Differences in water-oxygen interactions and oxygen scrambling were observed between (18)O/H 2 (16)O and (18)O/D 2 (16)O, the latter producing less scrambling. Similar differences were also observed in water reactivity toward CO oxidation, in which less CO 2 was produced with (16)O/D 2 (16)O than with (16)O/H 2 (16)O. These differences are likely due to primary kinetic isotope effects due to the differences in O-H and O-D bond energies.  相似文献   

12.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程. 结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低. 在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定. 在各加氢脱硫过程中,反应总体均放出热量. 对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤. 此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

13.
采用广义梯度近似的密度泛函理论并结合平板模型的方法,详细研究了糠醇在Cu(111)面上反应生成2-甲基呋喃的反应历程,优化了糠醇在Cu(111)面的吸附模型,并采用完全线性同步和二次同步变换的方法,对三种可能的反应机理中的各反应步骤进行了过渡态搜索.结果表明,糠醇主要通过支链上OH与Cu(111)面相互作用,易形成ψCH2和ψCH2O中间体(ψ代表呋喃环).糠醇进一步加氢机理很可能为:引入的氢物种明显降低了糠醇分解形成的中间体ψCH2的活化能,并促进了它的形成;中间体ψCH2更易从糠醇中获得H而生成2-甲基呋喃.该过程的控速步骤为ψCH2O*→ψCHO*+H*,活化能为199.0kJ/mol,总反应是2ψCH2OH=ψCH3+ψCHO+H2O.  相似文献   

14.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

15.
采用密度泛函理论(DFT), 选取DMol3程序模块, 对噻吩在M(111) (M=Pd, Pt, Au)表面上的吸附行为进行了探讨. 通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken 电荷布居、差分电荷密度以及态密度的分析发现, 噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小. 吸附后, 噻吩在Au(111)面上的构型几乎保持不变, 最终通过S端倾斜吸附于top 位; 噻吩在Pd(111)及Pt(111)面上发生了折叠与变形, 环中氢原子向上翘起, 最终通过环平面平行吸附于hollow 位. 此外, 噻吩环吸附后芳香性遭到了破坏, 环中碳原子发生sp3杂化, 同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道, 这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

16.
We applied periodic density-functional theory (DFT) to investigate the dehydrogenation of ethanol on a Rh/CeO2 (111) surface. Ethanol is calculated to have the greatest energy of adsorption when the oxygen atom of the molecule is adsorbed onto a Ce atom in the surface, relative to other surface atoms (Rh or O). Before forming a six-membered ring of an oxametallacyclic compound (Rh-CH2CH2O-Ce(a)), two hydrogen atoms from ethanol are first eliminated; the barriers for dissociation of the O-H and the beta-carbon (CH2-H) hydrogens are calculated to be 12.00 and 28.57 kcal/mol, respectively. The dehydrogenated H atom has the greatest adsorption energy (E(ads) = 101.59 kcal/mol) when it is adsorbed onto an oxygen atom of the surface. The dehydrogenation continues with the loss of two hydrogens from the alpha-carbon, forming an intermediate species Rh-CH2CO-Ce(a), for which the successive barriers are 34.26 and 40.84 kcal/mol. Scission of the C-C bond occurs at this stage with a dissociation barrier Ea = 49.54 kcal/mol, to form Rh-CH(2(a)) + 4H(a) + CO(g). At high temperatures, these adsorbates desorb to yield the final products CH(4(g)), H(2(g)), and CO(g).  相似文献   

17.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

18.
We studied computationally the activation of H(2) on clean planar (111), (110) and stepped (221) as well as oxygen pre-covered silver surfaces using a density functional slab model approach. In line with previous data we determined clean silver to be inert towards H(2) dissociation, both thermodynamically and kinetically. The reaction is endothermic by approximately 40 kJ mol(-1) and exhibits high activation energies of approximately 125 kJ mol(-1). However, oxygen on the surface, modeled by the reconstructed surface p(2 x 1)O/Ag(110) that exhibits -O-Ag-O- added rows, renders H(2) dissociation clearly exothermic and kinetically feasible. The reaction was calculated to proceed in two steps: first the H-H bond is broken at an Ag-O pair with an activation barrier E(a) approximately 70 kJ mol(-1), then the H atom bound at an Ag center migrates to a neighboring O center with E(a) approximately 12 kJ mol(-1).  相似文献   

19.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

20.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号