首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on three types of tunable dual-band metamaterial with dual negative refraction in this paper. The three types of metamaterial are composed of ferrite slabs and three different metallic resonators, including split-ring resonators (SRR), Ω-like resonators, and short wire pairs. The ferrite slabs under an applied magnetic bias provide one magnetic resonance frequency band and the three metallic resonators provide another magnetic resonance frequency band, respectively. The continuous wires within the metamaterials provide the negative permittivity in a wide frequency band covering the two magnetic resonance bands. We give the design, analysis and numerical demonstrations of three such types of metamaterial in detail. The effective electromagnetic parameters obtained from the simulated S-parameters indicate that the three types of metamaterial indeed exhibit two negative refraction passbands and the two passbands can also be shifted by changing the magnetic bias. Our results open the way to fabricate tunable dual-band metamaterial cloaks, absorbers, and antennas.  相似文献   

2.
We report an alternative method of designing a new metamaterial with left handed (LH) characteristics over multi-band (MB) frequencies at microwave frequency regime. The resultant LH metamaterial (LHM) consisting of a single-sided tree-shaped fractal structure features triple magnetic resonances and one electric resonance apart from the lower metal plasma response, which is responsible for the three bands of negative refraction. The multi-resonant mechanism has been systematically studied to account for all electromagnetic behaviors, and capacitor–inductor circuit models are put forward for quantitative analysis. The LHM is balanced in the fundamental passband when only one layer is utilized, whereas the balanced condition is slightly broken when a collection of sub-wavelength cells are cascaded. The negative-zero-positive refraction of the fundamental LH band and the negative refraction of the higher LH band have been numerically validated by a prism-like LHM. For demonstration, a three-layer LHM slab sample is fabricated and measured. Consistent numerical and experimental results are observed. The method not requiring individual resonant particles and electrically continuous wires paves the way for a new route to compact MB LHM design.  相似文献   

3.
A kind of planar left-handed metamaterial (LHM) with unique configurations is demonstrated, which offers an approach in building dual-band negative-index materials. Simulated and experimental results predict two left-handed transmission bands near 11.1 and 14.6 GHz. Dual bands of negative refractive indexes are verified using the retrieval procedure. Field and current distribution at the dual magnetic resonance are also examined. The effective electromagnetic parameters show that by carefully adjusting dimensions of the unit cell, electric and magnetic resonances can be coexistent at some frequency ranges with both negative permittivity and negative permeability. The idea can help us designing planar negative-index materials with multibands.  相似文献   

4.
We report true left-handed (LH) behavior in a composite metamaterial consisting of a periodically arranged split ring resonator (SRR) and wire structures. We demonstrate the magnetic resonance of the SRR structure by comparing the transmission spectra of SRRs with those of closed SRRs. We have confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined LH transmission band with a peak value of -1.2 dB (-0.3 dB/cm) was obtained. The experimental results agree extremely well with the theoretical calculations.  相似文献   

5.
By virtue of the efficiency of the Dirichlet-to-Neumann map method, the details of the band structure of a two-dimensional square lattice photonic crystal composed of dispersive metamaterial circular rods in air background has been studied. We show that there are two flat bands at the band structure of the system for both H-polarization and E-polarization. These flat bands are created around the magnetic resonance frequency, surface plasmon frequency and magnetic surface plasmon frequency. We realized that the modes with frequencies lying above the resonance frequency behave like resonant cavity modes created in a single metallic cylindrical waveguide. While, due to the relatively large and imaginary refractive index of the metamaterial rods at the frequencies lying below the resonance frequency, the modes are localized modes with negligible penetration into the rods. Moreover, the modes are localized at the interface of the cylindrical metamaterial rods and the air background for the frequencies around the surface plasmon frequency and the magnetic surface plasmon frequency.  相似文献   

6.
The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μB, while the orbital moment as high as 0.5 μB. The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5×4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment.  相似文献   

7.
In this work the sensing capability of an artificial magnetic metamaterial based on pairs of metal slabs is demonstrated, both theoretically and experimentally, in the microwave regime. The demonstration is based on transmission measurements and simulations monitoring the shift of the magnetic resonance frequency as one changes a thin dielectric layer placed between the slabs of the pairs. Strong dependence of the magnetic resonance frequency on both the permittivity and the thickness of the dielectric layer under detection was observed. The sensitivity to the dielectrics′ permittivity (ε) is larger for dielectrics of low ε values, which makes the approach suitable for sensing organic materials also in the THz regime. The capability of our approach for THz sensing is also demonstrated through simulations.  相似文献   

8.
陈春晖  屈绍波  徐卓  王甲富  马华  周航 《物理学报》2011,60(2):24101-024101
利用将磁谐振器与共面短金属导线相结合的思想,设计了一种基于单面金属结构的二维左手材料. 理论分析与仿真结果均表明该结构在某一频段同时具有负等效磁导率和负等效介电常数,并且相对左手带宽达到36%. 此外,该结构具有良好的容错能力,短金属导线宽度的变化对整体结构的谐振频率及通带宽度影响很小,这不仅有利于实际加工而且对于设计红外及太赫兹频率范围下的左手材料具有参考价值. 关键词: 左手材料 磁谐振器 宽频带 容错性  相似文献   

9.
In this paper, we present theoretical and experimental results for the indication of negative refraction in ferromagnetic metallic wire lattice. We have studied microwave transmission through a two dimensional wire lattice made of ferromagnetic metallic wires under the applied static magnetic field. We have found that, the microwave transmission were significantly changed at ferromagnetic resonance frequency region. Thus the magnetic permeability can be tuned by external dc magnetic field. Since the dielectric permittivity of metallic wire lattice is negative and can take a value close to unity then the crystal exhibits negative index of refraction at microwave region under the external magnetic field.  相似文献   

10.
We numerically and experimentally investigate a planar metamaterial that is composed of connected cut-wire pairs and continuous wires operating at 21 GHz. The characterization was performed by using the effective medium theory. The existence of negative refraction is concluded from the transmission data of four structures: cut-wire pairs, shorted cut-wire pairs, composite metamaterial, and shorted composite metamaterial.  相似文献   

11.
Tunable metamaterial operating in terahertz (THz) frequency range based on dielectric cubic particles with deposited conducting resonant strip was investigated. The frequency of the first magnetic type Mie resonance depends on the electric length of the strip. It can be changed under photoexcitation or applied voltage. This method of control was used for a design of tunable double negative metamaterial based on dielectric resonant inclusions and wire medium.  相似文献   

12.
We report on microwave experiments with a metamaterial composed of pairs of metallic crosses. The transmission properties of the structure show a left-handed transmission band at frequencies around 10.2 GHz. The validity of the negative effective index of refraction is verified by a Snell’s law refraction experiment performed on a wedge-shaped sample of the metamaterial. A second measurement of a similar wedge made from blank FR4 boards is done for reference. The results of the measurements show positive refraction over the whole measured frequency band for the FR4 wedge as well as the refraction of the incident radiation to negative angles within the designated left-handed frequency band for the metamaterial sample.  相似文献   

13.
We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.  相似文献   

14.
This paper presents a negative refractive index tunable metamaterial based on F-Shape structure which is capable of achieving dual-band negative permeability and permittivity, thus dual-band negative refractive index. An electromagnetic simulation was performed and effective media parameters were retrieved. Numerical investigations show clear existence of two frequency bands in which permeability and permittivity both are negative. The two negative refractive index bandwidths are from 23.8 GHz to 24.1 GHz and from 28.3 GHz to 34.9 GHz, respectively. The geometry of the structure is simple so it can easily be fabricated. The proposed structure can be used in multiband and broad band devices, as the band range in second negative refractive index region is 7 GHz, for potential applications instead of using complex geometric structures and easily tuned by varying the separation between the horizontal wires.  相似文献   

15.
A tunable broadband metamaterial absorber is demonstrated at microwave frequencies in this paper.The metamaterial absorber is composed of ferrite slabs with large resonance beamwidths and a copper wire.The theoretical analysis for the effective media parameters is presented to show the mechanism for achieving the perfect absorptivity characteristic.The numerical results of transmission,reflectance,and absorptivity indicate that the metamaterial absorber exhibits a near perfect impedance-match to free space and a high absorptivity of 98.2% for one layer and 99.97% for two layers at 9.9 GHz.The bandwidth with the absorptivity above 90% is about 2.3 GHz.Moreover,the absorption band can be shifted linearly in a wide frequency range by adjusting the magnetic bias.This metamaterial absorber opens a way to prepare perfectly matched layers for engineering applications.  相似文献   

16.
We present a detailed study on the artificial magnetism of high-permittivity dielectric spherical shell array and the negative refraction behavior of the composite consisting of dielectric spherical shells and metal wire lattice. The spherical shell array in cubic lattice arrangement can exhibit an isotropic negative magnetism when excited into magnetic dipole resonance. When the dielectric spherical shell and metal wire lattice are combined in a body-centered cubic structure, full-wave simulations show that the bulk metamaterial with this structure can exhibit a negative refraction behavior. It is shown that artificial magnetic response can originate from differently structured dielectric elements, similarly to the conventional metamaterial constituents based on metal resonance structures.  相似文献   

17.
For a previously simulated eight-broadband negative-refraction-index chiral metamaterial,we use S-parameter retrieval methods to determine the complex effective permittivity,permeability,and the impedance.We also calculate the figure of merit,which is defined as the ratio of the real and the imaginary refraction components,and compare it with those of fishnet metamaterials.The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum.Also,we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies.Therefore,this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands.  相似文献   

18.
熊汉  洪劲松  金大琳  章志敏 《中国物理 B》2012,21(9):94101-094101
A low absorptivity broadband negative refractive index metamaterial with multi-gap split-ring and metallic cross (MSMC) structure is proposed and investigated numerically and experimentally in the microwave frequency range. From the numerical and experimental results, the effective media parameters were retrieved, which clearly show that there exists a very wide frequency band where the permittivity and permeability are negative. The influence of the structure parameters on the magnetic response and the cut-off frequency of the negative permittivity are studied in detail. This metamaterial would have potential application in designing broadband microwave devices.  相似文献   

19.
Probabilities of n-photon transitions between upper valence and lower conduction bands under conditions in which the frequency of light is in resonance with the frequency of adjacent transition between two conduction bands are calculated for arbitrary integer n. The case of n = 3 is investigated in detail. Effects caused by transformation of the electronic band spectrum due to the resonance optical Stark effect are analyzed. It is shown that the rate of photogeneration of electron-hole pairs as a function of radiation intensity j is nonmonotonic and includes areas of extremely fast rise and/or decrease due to the appearance of new van Hove singularities in the modified band spectrum.  相似文献   

20.
梁浩  李剑生  郭云胜 《物理学报》2015,64(14):144101-144101
通过将两个金属开口环谐振器口对口地放置, 实现了超材料谐振子间的电耦合谐振. 对电耦合谐振的微波等效电路进行了理论分析和数值计算, 结果表明耦合后的超材料谐振子能产生两个谐振频率, 其中一个随耦合强度的增加逐渐向低频方向移动, 而另一个固定在单谐振子的谐振频率处不变. 微波透射谱的实验测试和电磁仿真结果表明, 两个谐振峰随耦合强度的增加分别向低频和高频方向移动. 分析表明: 低频谐振峰的位置主要是由超材料谐振子间的电耦合强度决定的; 高频谐振偏离单谐振子的谐振频率主要是由不可避免的磁耦合引起的, 而且在耦合间距越小时磁耦合影响越大. 提出的基于超材料谐振子间的电磁耦合实现的双频谐振及其可调性极大地增加了超材料的设计与应用空间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号