首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
Periodic surface profiles with amplitudes of ≦0.4 μm and periodicities of 4–20 μm were prepared on Ni(110), (100), and (111) single crystal surfaces. These crystals were annealed in ultra-high vacuum (UHV) at 1073–1327 K after they had been cleaned by Ar ion bombardment and investigated by Auger electron spectroscopy. The geometry of the profiles was studied in UHV by laser diffraction and outside the vacuum by interference microscopy. The profiles have sinusoidal shapes on Ni(110) but trapezoidal shapes on both the (100) and (111) surfaces. This type of faceting can be understood on the basis of the anisotropic surface energy of Ni, with cusps at the (100) and (111) orientations. Model calculations show in the case of anisotropic surface energy that periodic profiles develop facets which correspond to the low surface energy orientations (close-packed surfaces).  相似文献   

2.
The ordering and faceting properties of UO2(~100) vicinal surfaces have been studied via LEED and Auger measurements. The measurements have demonstrated a reduced tendency for step ordering on UO2(~100) vicinal surfaces when compared to step ordering on UO2(~111) vicinal surfaces. The UO2(~100) vicinal surfaces were observed to decompose irreversibly into low-index facets, including prominent (100) facets, at temperatures below those needed for creation of lowest index faceting on UO2(~111) vicinal surfaces. These properties suggest that (100) terraces, in contrast to (111) terraces, act as surface diffusion barriers that limit longrange surface communication while growing at the expense of intermediate faceting stages.  相似文献   

3.
《Surface science》1992,274(3):L619-L626
We have used local volume (or EAM) potentials to study the pyramidal faceting (or reconstruction) of a W(111) surface induced by face center cubic (fcc) metals Pd, Pt, Au, and a body center cubic (bcc) metal Mo. We found that the surface-energy differences of (211) and (111) surfaces of bcc W increases as one or few monolayers of Pd, Pt, Au, and Mo films are deposited. We found that the lateral relaxation which is allowed on the (211) surface further increases the surface energy anisotropy as the thickness of the fcc metal film increases. Our calculated results are consistent with the argument that the surface energy anisotropy is the driving force for the faceting, but do not rule out three-dimensional (3D) island growth as another possible mechanism for the (211) faceting. We also found that there is a possible bilayer growth mode in W(211) surfaces with Pt and Pd films.  相似文献   

4.
C. -H. Nien  T. E. Madey 《Surface science》1997,380(2-3):L527-L532
The faceting of Pd/W(111) surfaces has been studied using a Scanning tunneling microscope (STM). Three-sided pyramidal facets having {211} faces with dimensions ranging from 3 to 15 nm can be induced by ultrathin Pd films (≥ 1 monolayer), upon annealing to 700 K or higher. From atomic-resolution STM-images of these surfaces, we obtain direct confirmation of the {211} structure on individual facets of the 3-sided pyramids. In addition, the atomic structure of the facet edges indicates that edge energy may play a role in faceting. When the as-deposited coverage of Pd is greater than the critical value ( 1 monolayer) for inducing faceting, the extra Pd atoms diffuse to form 3-dimensional clusters, some with discernible crystalline structures, upon annealing.  相似文献   

5.
Using first-principles total-energy calculations, we show that an adatom can easily climb up at monatomic-layer-high steps on several representative fcc metal (110) surfaces via a place exchange mechanism. Inclusion of such novel adatom ascending processes in kinetic Monte Carlo simulations of Al(110) homoepitaxy as a prototypical model system can lead to the existence of an intriguing faceting instability, whose dynamical evolution and kinetic nature are explored in comparison with experimental observations.  相似文献   

6.
The effect of vacuum annealing on the morphology of hydrogenated and oxidized Si(310) surfaces is investigated by scanning tunnel microscopy, reflection high-energy electron diffraction, and low-energy electron diffraction. It is found that after desorption of a passivating coating, the surface has a strongly developed profile formed preferentially by steps two monolayers in height. Annealing at a temperature of 900±15°C with subsequent abrupt cooling leads to faceting of the surface by (510) planes. The presence of steps two monolayers in height on the Si(310) surface allows one to use Si crystals oriented along the (310) plane as the substrate for heteroepitaxy of the II–VI compounds.  相似文献   

7.
Using low-energy electron diffraction, we have studied the reconstruction of Si(331). We find a previously unreported (12 × 1) reconstruction is characteristic of the clean surface; we present evident that a previously observed (13 × 1) reconstruction is not the equilibrium structure. The (12 × 1) reconstruction disorders via a strongly first-order phase transition at approximately 810°C. Heating carbon contaminated surfaces to about 950°C causes faceting to (111) and {17151} orientations.  相似文献   

8.
M. Sotto 《Surface science》1992,260(1-3):235-244
A LEED and AES study on oxygen adsorption on Cu(100) and (h11) faces with 5 h 15 has been performed under various adsorption conditions (220 K T 670 K and 1 × 10−8 P 6 × 10−5 Torr of oxygen). The dependence of adsorption temp on the oxygen surface superstructures is pointed out. At least, three oxygen surface states exist on a Cu(100) face. For low temperature exposures to oxygen, under conditions of slow surface diffusion, on the (100) face, two oxygen surface phases exist: a “four spots” and a c(2 × 2) superstructure, both observed even at saturation coverage; on all the stepped faces, a c(2 × 2) appears and no faceting is observed. For high temperature exposures, on the (100) face, two oxygen superstructures are observed, a “four spots” followed by a (2√2 × √2)R45° at higher coverages; on all the stepped faces, surface diffusion is activated and oxygen induced faceting occurs. The appearance of faceting is associated with the onset of the formation of the (2√2 × √2)R45° structure on the (100) face. The oxygen induced faceting and the oxygen surface meshes are reversible with coverages. At saturation coverage, a non-reversible surface transition between the c(2 × 2) and (2√2 × √2)R45° superstructures is observed at 420 ± 20 K. The importance of impurity traces on the surface meshes is emphasized. Oxygen coverage at saturation is independent of the studied faces and adsorption temperature. Faceting occurs at a critical coverage value, whatever the stepped faces and adsorption temperature are. Models of the oxygen structure on the (h10) stepped faces are discussed.  相似文献   

9.
V.M. Bermudez 《Surface science》2010,604(7-8):706-712
The adsorption of dimethyl methylphosphonate (DMMP) on the (0 1 0) surface of anatase TiO2, which is isostructural with the (1 0 0), has been studied using density functional theory and two-dimensionally-periodic slab models. The experimentally-observed faceting of this surface has, for the first time, been included in the modeling. The relaxations of bare surfaces both with and without faceting are similar, leading to an atomic-scale roughening due to inward (outward) displacement of fivefold-coordinated Ti5c (sixfold-coordinated T6c) atoms together with outward displacement of threefold-coordinated O3c atoms. Molecular adsorption occurs by formation of a Ti5c?OP dative bond with one or more CH?O2c bonds between CH3 groups and unsaturated, twofold-coordinated (O2c) sites. The energies for molecular adsorption, obtained using the B3LYP functional, are virtually identical (about ?21.0 kcal/mol) for the two surfaces and are also close to those found elsewhere for the rutile (1 1 0) and anatase (1 0 1) surfaces. A possible first step in the dissociative adsorption of DMMP has also been modeled and is found to be thermodynamically favored over molecular adsorption to a degree which depends on faceting.  相似文献   

10.
A. Güttler  T. Zecho  J. Küppers   《Surface science》2004,570(3):218-226
Adsorption of thermal (2000 K) D (H) atoms on HOPG surfaces prior to and after bombardment with 500 eV Ar ions was studied with thermal desorption and vibrational spectroscopies. Ion bombardment of HOPG generates vacancy (VD, displaced surface C atoms) and interstitial (ID, Ar captured between 1st and 2nd C plane) defects. These defects remove the ability of the surface to adsorb D like on virgin HOPG surfaces and to form Cgr–D bonds. After a dose of 0.1 Ar per C surface atom, D adsorption is markedly suppressed. Annealing of bombarded surfaces at 1350 K, connected with desorption of trapped Ar and removal of ID, recovers a large fraction of the adsorption capacity for D. Therefore, the long range stress in the surface plane introduced by ID must be responsible for a significant fraction of D adsorption blocking. It is suggested that ID prevent reconstruction of the C surface which is required for the formation of Cgr–D bonds. For ion doses above 0.5 Ar/C, adsorption of D on the surface is negligible. After annealing at 1350 K, D can be adsorbed in quantities comparable to the virgin HOPG surface, however forming C–D bonds which are similar to those observed in hydrogenated amorphous carbon instead of those which are normally formed on HOPG. Instationary etching via release of deuterocarbon species occurs primarily in the C1 and C2 channels. It is only observed at bombarded HOPG prior to annealing and probably due to the presence of isolated C1 and C2 species on the surface generated upon VD formation.  相似文献   

11.
(1 1 0) surfaces of most fcc metals are only marginally stable against faceting into (1 1 1) orientations. Trace concentrations of adsorbates (surfactants) that prefer (1 1 1) over (1 1 0) facets can tip the balance and favor faceting of all or part of the (1 1 0) surface. The growth of such facets is impeded by island and vacancy-island nucleation barriers. However, during atom deposition or etching these barriers are reduced. Growth or removal conditions and facet stabilizing surfactant concentrations control the evolving faceted nano-patterns. Recent observations of hut-shaped nanocrystals formation on Al(1 1 0) are consistent with this model.  相似文献   

12.
The stability of metal vicinal surfaces with respect to faceting is investigated using empirical potentials as well as electronic structure calculations. It is proven that for a wide class of empirical potentials all vicinal surfaces between (100) and (111) are unstable at 0 K when the role of third and farther nearest neighbors is negligible. However, electronic structure calculations reveal that the answer concerning the stability of vicinal surfaces is not so clear-cut. Finally, it is shown that surface vibrations at finite temperatures have little effect on the stability of vicinal surfaces.  相似文献   

13.
L.E. Firment 《Surface science》1982,116(2):205-216
Temperature dependent faceting of rutile TiO2 surfaces cut to the (001) plane has been reported [Tait and Kasowski, Phys. Rev. B20 (1979) 5178]. By comparing LEED data to beam positions calculated for various sets of facet planes, the facet planes have been identified. The first ordered structure observed on annealing ion bombarded surfaces is composed of {011} facets with the facet planes in a (2 × 1) reconstruction. The high temperature structure produced on annealing above 1300K is best described as {114} facets; however, there are deviations of the observed LEED pattern from that calculated for {114} facets, possibly because of the presence of related planes. LEED data have now been obtained on the behavior of (110), (100), (011), (114), and (001) surfaces in UHV. The observed stability of TiO2 surfaces can be related to the Ti ion coordination numbers in the surface plane as derived from stoichiometric terminations of the rutile lattice.  相似文献   

14.
The morphology of a Au(111) surface has been observed with the STM (scanning tunneling microscope) after ion bombardment with 2.5 keV Ne+ ions at about 400 K. Mostly triangular and hexagonal shaped vacancy islands are seen in the STM topographs. They are bounded by monatomic steps, oriented along the closed packed 110 directions. The general morphology confirms the conclusions inferred from TEAS (thermal energy atom scattering) measurements on ion bombarded Pt(111) surfaces. The observation of a propensity for the formation of {100} microfacetted 110 ledges is discussed.  相似文献   

15.
The production and annealing of damage on a nickel (110) surface has been studied with low energy ion scattering (LEIS) and the results are discussed and compared with previously reported LEED, LEIS and TEM results. It is concluded that the production of damage on crystal surfaces which remain crystalline under ion bombardment may be explained in terms of the nucleation and growth of vacancy clusters. It is found that the damage, as observed by ion scattering, saturates at a level which does not depend on such bombardment conditions as temperature or ion species. The experiments indicate that at saturation, the surface is in a state of dynamic equilibrium in which the rates of creation and loss of surface pits are equal. Expressions are derived to explain both the present and previously reported ion scattering results. The annealing measurements show that two different anneal processes can be distinguished.  相似文献   

16.
We demonstrate a self-organized pattern formation on vicinal Si(111) surfaces that are miscut toward the [2;11] direction. All the patterns, consisting of a periodic array of alternating (7 x 7) reconstructed terraces and step-bunched facets, have the same periodicity and facet structure, independent of the miscut angle, while the width of the facets increases linearly with miscut angle. We attribute such unique pattern formation to a surface faceting transition that involves two transition stages: the first stage forms a stress-domain structure defining the universal periodicity; the second stage forms the low-energy facets controlling the facet width.  相似文献   

17.
The electronic properties of SrTiO3(100) surfaces after various treatments have been studied by electron energy loss spectroscopy and Auger electron spectroscopy. A stoichiometric surface without contamination can be obtained by annealing at 910 K under oxygen atmosphere of 5 × 10−5 Pa. The surface heated under ultrahigh vacuum (UHV) at 910 K exhibits a new surface state in the band gap region, which comes from oxygen vacancies at the top Ti-O2 layer. This state is also produced by electron irradiation or Ar-ion bombardment.  相似文献   

18.
Using atomic force microscopy and spot-profile analyzing low energy electron diffraction, we have observed the existence of a striking faceting instability in Al(110) homoepitaxy, characterized by the formation of nanocrystals with well-defined facets. These hut-shaped nanocrystals are over tenfold higher than the total film coverage, and coexist in a bimodal growth mode with much shallower and more populous surface mounds. We further use density functional theory calculations to elucidate the microscopic origin of the faceting instability, induced by surprisingly low activation barriers for adatom ascent at step edges and island corners.  相似文献   

19.
The structural and electronic properties of InSb(110) surfaces, which were cleaned by argon bombardment annealing technique, have been investigated by LEED and surface conductivity measurements during oxygen adsorption. The diffraction patterns before and during exposure exhibit only diffraction spots which are compatible with the bulk periodicity. The exposures resulted in a gradual decrease of all beams. The surface conductivity increases during exposures. The magnitude of the adsorption induced changes is determined by the coverage and by the density of surface defects. In view of these results the oxidation process on the InSb(110) sur face is discussed.  相似文献   

20.
利用低能电子衍射(LEED)研究了离子轰击加退火处理的和淀积外延的两种Si(113)表面的原子结构。发现对于经750—800℃退火后的两种Si(113)表面,当其温度高于600℃时存在1×1非再构表面相。随着样品温度缓慢地冷却至室温,Si(113)-1×1表面经过3×1(约600—400℃)最后转变为3×2再构。当退火温度为600℃时,则只出现3×1再构,室温下的3×2和3×1表面都是很稳定的。讨论了表面杂质对Si(113)表面原子结构的影响。在衬底温度为580℃的Si(113)表面上进行淀积生长,当外延 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号