首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, GEANT4 based Monte Carlo codes have been employed to evaluate parallel plate avalanche counter (PPAC) response for fast neutron detection. In order to detect fast neutrons, a thin polyethylene layer is coated on the surface of the electrode of the PPAC. Neutrons entering the converter produce protons which enter the counter and are detected. Fast neutrons in the energy range of 4.0 MeV–20.0 MeV have been transported onto the PPAC surface using GEANT4 MC code. The performance of the PPAC counter has been evaluated by means of simulation by employing QGSP_BERT_HP and QGSP_BIC_HP physics lists. The detection efficiencies of polyethylene-coated PPAC are 1.69 × 10?2 and 1.86 × 10?2 using converter thickness of 1 mm and 2 mm, respectively. The obtained results are discussed in detail.  相似文献   

2.
Recent developments in accelerator physics have led to new challenges for radiation protection dosimetry. Doses have to be determined for workplace fields which are characterized by high-energy radiation, a dominant contribution from neutrons, high intensities and pulsed time structure This may present problems for active measuring devices. As is well known, the ambient dose equivalent is often underestimated by area monitors operating in high-energy neutron fields behind shielding. Therefore, it is desirable to calibrate survey monitors in a characterized neutron field with the type of spectral fluence distribution that is expected behind shielding, i.e. where the main dose from neutrons arises from two peaks with mean energies of about 1 MeV and 100 MeV, respectively. Such a neutron fluence distribution is produced by the irradiation of a Fe-target with 200 MeV/u 12C-ions. Measurements with the extended range Bonner sphere spectrometer NEMUS of PTB were performed at two positions inside the experimental area Cave A of the heavy-ion synchrotron SIS at GSI. The measured neutron spectra show different fluence contributions for the two peaks at the two positions. The results were compared to Monte Carlo Simulations with MCNPX and FLUKA.  相似文献   

3.
Fission fragments and other charged particles leave tracks of permanent damage in most of the insulating solids. Damage track detectors are useful for personal dosimeters and for flux/dose determination of high-energy particles from accelerators or cosmic rays. A detector that has its principal response at nucleon energy above 50 MeV is provided by the fission of Bi-209. Neutrons produce the largest percentage of hadron dose in most high-energy radiation fields. In these fields, the neutron spectrum is typically formed by low-energy neutrons (evaporation spectrum) and high-energy neutrons (knock-on spectrum). We used Bi-fission detectors to measure neutron peak fluence and compared the result with the calculated value of neutron peak fluence. For the exposure to 100 MeV we have used the iThemba Facility in South Africa.  相似文献   

4.
At present, high energy electron linear accelerators (LINACs) producing photons with energies higher than 10 MeV have a wide use in radiotherapy (RT). However, in these beams fast neutrons could be generated, which results in undesired contamination of the therapeutic beams. These neutrons affect the shielding requirements in RT rooms and also increase the out-of-field radiation dose to patients. The neutron flux becomes even more important when high numbers of monitor units are used, as in the intensity modulated radiotherapy. Herein, to evaluate the exposure of patients and medical personnel, it is important to determine the full radiation field correctly. A model of the dual photon beam medical LINAC, Siemens ONCOR, used at the University Hospital Centre of Osijek was built using the MCNP611 code. We tuned the model according to measured photon percentage depth dose curves and profiles. Only 18 MV photon beams were modeled. The dependence of neutron dose equivalent and energy spectrum on field size and off-axis distance in the patient plane was analyzed. The neutron source strength (Q) defined as a number of neutrons coming from the head of the treatment unit per x-ray dose (Gy) delivered at the isocenter was calculated and found to be 1.12 × 1012 neutrons per photon Gy at isocenter. The simulation showed that the neutron flux increases with increasing field size but field size has almost no effect on the shape of neutron dose profiles. The calculated neutron dose equivalent of different field sizes was between 1 and 3 mSv per photon Gy at isocenter. The mean energy changed from 0.21 MeV to 0.63 MeV with collimator opening from 0 × 0 cm2 to 40 × 40 cm2. At the 50 cm off-axis the change was less pronounced. According to the results, it is reasonable to conclude that the neutron dose equivalent to the patient is proportional to the photon beam-on time as suggested before. Since the beam-on time is much higher when advanced radiotherapy techniques are used to fulfill high conformity demands, this makes the neutron flux determination even more important. We also showed that the neutron energy in the patient plane significantly changes with field size. This can introduce significant uncertainty in dosimetry of neutrons due to strong dependence of the neutron detector response on the neutron energy in the interval 0.1–5 MeV.  相似文献   

5.
中子照相是一种重要的无损检测技术,它能用于火工产品、毒品和核燃料元件等的检测。基于紧凑型D-T中子发生器,完成了一个用于快中子照相的准直屏蔽体系统(BSA)的物理设计。根据D-T中子源的能谱和角分布建立了中子源模型,采用MCNP4C蒙特卡罗程序,模拟了准直屏蔽体系统中中子和γ射线的输运,准直中子束相对于单位源中子的中子注量可以达到9.30×10-6 cm-2,准直中子束中主要是能量大于10 MeV的快中子;在设置的样品平面直径14 cm的照射视野范围,准直束中子注量的不均匀度为4.30%,准直束中中子注量与γ注量的比值为17.20,中子通量和中子注量比值J/Φ为0.992,说明准直中子束有好的平行性;准直屏蔽体外的泄露中子注量率与准直束中子注量率相比降低了2个量级。所设计的准直屏蔽体能满足快中子照相的要求。Neutron radiography is an important nondestructive testing technique. It can be used to detect the explosive devices, drug and the nuclear fuel element, etc. A beam-shaping-assembly (BSA) based on a compact D-T neutron generator is designed for fast neutron radiography in this paper. D-T neutron source model is constructed based on the neutron energy spectrum and angular distribution data. The transportation of neutron and γ-ray in the BSA is simulated using MCNP4C code. The neutron fluence of the collimated neutron beam with respect to the neutron source of the unit source is 9.30×10-6 cm-2. The collimated neutron beams is mainly fast neutrons with energies greater than 10 MeV. In the irradiation field range with a diameter of 14 cm, the neutron fluence uniformity of the collimated beam is 4.3%, the ratio of the neutron fluence to the gamma fluence in the collimated beam is 17.20, and the neutron flux and the neutron fluence ratio (J/Φ) is 0.992 which indicates that the collimated neutron beam has good parallelism. The leakage neutron fluence in outside of BSA is two orders of magnitude lower than that of the collimated neutron beam. The designed BSA can meet the need of fast neutron radiography.  相似文献   

6.
The cosmic radiation field at aviation altitudes can be measured with simple passive detectors. The non-neutron component may be measured by means of thermoluminescence dosimetry or other techniques, and the neutron component may be measured using poly allyl diglycol carbonate (PADC) dosemeters as described in this paper. Effective dose from neutron radiation becomes the larger component for altitudes above about 10 km, in general. The dominance is more pronounced for higher latitudes. The neutron energies range up to the maximum of the incident protons, that is many GeV. However the majority of the dose is contributed by neutrons of a few hundred MeV and less, with two maxima in the fluence spectrum, one between 1 and 10 MeV and the other between 50 and 150 MeV. We have used PADC dosemeters, electrochemically etched, to estimate the neutron component of effective dose. Up to 50 dosemeters are used in a single measurement to obtain an estimate of sufficient precision for total neutron effective doses of 50 microSv and less. The neutron fluence response characteristics of the dosemeter have been measured up to 70 MeV. These are extrapolated up to 180 MeV. This extrapolation is validated, partially, by a comparison of measured and predicted readings in the CERN reference field. From the dosemeter readings for exposure on board aircraft, neutron fluence may be estimated assuming an isotropic radiation field and the estimated neutron fluence spectrum. The neutron fluence may then be converted to effective dose using published values of conversion coefficients with the same assumptions of isotropy and known fluence spectrum. For the measurement results reported here, the calculated spectrum for the CERN concrete shielded field is used.  相似文献   

7.
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the ~6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission.  相似文献   

8.
在中高能质子诱发散裂反应相关核工程设计中,可靠的蒙特卡罗模拟程序结合核反应理论模型具有较好的理论指导意义。本工作中,利用GEANT4耦合INCL4和ABLA理论模型以及FLUKA耦合PEANUT模型模拟计算了几百MeV至几个GeV质子轰击Be,Al,Fe,W,U等靶后30°,60°,120°,150°出射角产生的散裂中子双微分截面,并与现有实验数据进行了比较。结果发现,FLUKA和GEANT4模拟计算较好地再现了Al,Fe,W,U等靶实验测量数据。然而,模拟结果明显低估了Be靶出射中子能量小于10 MeV能区的实验数据。For the design of nuclear engineering related with medium-high energy proton induced spallation reaction,the reliable Monte Carlo simulation codes coupled with nuclear reaction models have a good theoretical guidance.In this work,the production spallation neutron double differential cross sections at 30°,60°,120°,150°emission angle for Be,Al,Fe,W,U target materials at incident proton energies between several hundred MeV and GeV are theoretically calculated by using the GEANT4 coupled INCL4 and ABLA,and the FLUKA coupled PEANUT.The calculated results were compared with the available experimental data.It is found that the GEANT4 and FLUKA calculations well reproduced the experimental measurement of Al,Fe,W,U target materials.However,calculations obviously underestimated the emission neutrons of Be target for lower than 10 MeV energy range.  相似文献   

9.
A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ~8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.  相似文献   

10.
A theoretical design for a neutron dosimeter has been investigated to determine whether it is capable of estimating effective dose. The design is essentially simple: a 10.16 cm radius sphere of borated scintillator that is interrogated by a tetrahedral arrangement of photomultipliers. A sigmoid artificial neural network was used to analyse MCNP calculations of the neutron capture distribution within the sphere for energies from thermal to 16 MeV, incident from 26 separate directions. Results to date are sufficiently encouraging that a prototype device is now under consideration.  相似文献   

11.
Extended Bonner Spheres spectrometer was used to measure the angular distribution of neutron spectral fluence around NYLON6 phantom irradiated with pencil beam of 100, 150 and 200 MeV protons at the Proton Therapy Center Praha. Measurements were supplemented by a calculation of neutron spectral fluences at different depths of the phantom. The calculation of neutron spectral fluence at different depth of the phantom demonstrated that the majority of high energy neutrons was generated at the beginning of the proton trajectory in the phantom and the neutron yield decreased with increasing depth, with a minimum at the depth corresponding to the Bragg peak. Therefore, attention should be paid not only to the tissue behind the irradiated volume, but also to the preceding tissue. However, the neutron spectral fluence in the vicinity of the treated tissue can only be determined by calculation, mainly due to the dimensions of the neutron spectroscopic instrumentation. This paper presents a suitable technique and experimental conditions to acquire reliable data necessary for the proper determination of neutron spectral fluence. From the measured spectral fluences, the neutron fluence in whole-range and partial energy intervals were determined together with the corresponding ambient dose equivalents at measurement positions. The obtained results indicate that high energy neutrons predominate at the direction of the proton beam and more neutrons are generated by higher energy protons.  相似文献   

12.
This work focusses on the estimation of induced photoneutrons energy, fluence, and strength using nuclear track detector (NTD) (CR-39). Photoneutron energy was estimated for three different linear accelerators, LINACs as an example for the commonly used accelerators. For high-energy linear accelerators, neutrons are produced as a consequence of photonuclear reactions in the target nuclei, accelerator head, field-flattening filters and beam collimators, and other irradiated objects. NTD (CR-39) is used to evaluate energy and fluence of the fast neutron. Track length is used to estimate fast photoneutrons energy for linear accelerators (Elekta 10 MV, Elekta 15 MV, and Varian 15 MV). Results show that the estimated neutron energies for the three chosen examples of LINACs reveals neutron energies in the range of 1–2 MeV for 10 and 15 MV X-ray beams. The fluence of neutrons at the isocenter (Φtotal) is found to be (4×106 n cm2 Gy?1) for Elekta machine 10 MV. The neutron source strengths Q are calculated. It was found to be 0.2×1012 n Gy?1 X-ray at the isocenter. This work represents simple, low cost, and accurate methods of measuring fast neutrons dose and energies.  相似文献   

13.
Abstract

The change in electrical properties of TGS crystals due to induced defects created by fast neutron irradiation of two different energies (2 and 14 MeV) and different integrated neutron fluxes have been studied in the vicinity of phase transition. It is observed that the electrical conductivity increases with increase of neutron fluence up to 1.7 × 1010 n · cm?2 and the values of the relative change of electrical conductivity in case of 2 MeV are higher than that of 14 MeV neutrons at the same neutron fluence (φ)  相似文献   

14.
Irradiation effect of low-fluence (-108 n/cm2 ) slow neutrons on halogen-doped superconductors is presented in this paper. And the mechanism of the effect is also described from the viewpoint of nuclear physics for both fast and slow neutrons on high-temperature superconductors (HTSC). It is shown ex-perimentally and theoretically that slow neutrons of low fluence has a similar irradiation effect to that of fast neutron beams with an energy En>0.1 MeV and fluence 1016-1018 n/cm2-However,quite differ-ent mechanisms are involved in them: Fast neutrons transfer their energies through elastic scattering in HTSC, whereas slow neutrons give off their energies during the slow neutron capture (n,γ) reaction.  相似文献   

15.
Contemporary linear accelerators applied in radiotherapy generate X-ray and electron beams with energies up to 20 MeV. Such high-energy therapeutic beams induce undesirable photonuclear (γ,n) and electronuclear (e,e'n) reactions in which neutrons and radioisotopes are produced. The originated neutron can also induce reactions such as simple capture, (n,γ), reactions that produce radioisotopes. In this work measurements of the non-therapeutic neutrons and the induced gamma radiation were carried out in the vicinity of a new medical accelerator, namely the Varian TrueBeam. The TrueBeam is a new generation Varian medical linac making it possible to generate the X-ray beams with a dose rate higher than in the case of the previous models by Varian. This work was performed for the X-ray beams with nominal potentials of 10 MV (flattening filter free), 15 MV and 20 MV, and for a 22 MeV electron beam. The neutron measurements were performed by means of a helium chamber and the induced activity method. The identification of radioisotopes produced during emission of the therapeutic beams was based on measurements of the energy spectra of gammas emitted in decays of the produced nuclei. The gamma energy spectra were measured with the use of the high-purity germanium detector. The correlation between the neutron field and the mode and nominal potential was observed. The strongest neutron fluence of 3.1 × 106 cm−2 Gy−1 and 2.0 × 106 cm−2 Gy−1 for the thermal and resonance energies, respectively, was measured during emission of the 20 MV X-ray beam. The thermal and resonance neutron fluence measured for the 15 MV X-rays was somewhat less, at 1.1 × 106 cm−2 Gy−1 for thermal neutrons and 6.7 × 105 cm−2 Gy−1 for resonance neutrons. The thermal and resonance neutron fluences were smallest for the 10 MV FFF beam and the 22 MeV electron beam and were around two orders of magnitude smaller than those of the 20 MV X-ray beam. This work has shown that the neutron reactions are dominant because of relatively high cross sections for many elements used in the accelerator construction. The detailed analysis of the measured spectra made it possible to identify 11 radioisotopes induced during TrueBeam delivery. In this work the following radioisotopes were identified: 56Mn, 122Sb, 124Sb, 131Ba, 82Br, 57Ni, 57Co, 51Cr, 187W, 24Na and 38Cl.  相似文献   

16.
The large values of integrated cross sections for the excitation and de-excitation of nuclear isomers in (γ, γ′) reactions provide strong encouragement for the feasibility of an optically pumped gamma-ray laser. For this reason, sources of possible spurious contamination of the measurements were carefully considered. This paper reviews an analysis of possible sources as well as experimental limits on contamination of the isomeric yields. The question of spurious contributions from (n, γ) or (n, n′) reactions was examined by estimating the level of thermal, epithermal and fast neutron fluxes based on possible source material in the accelerator environments. Such possibilities were severely reduced by the range of photon energies employed in the studies of 1.5-6 MeV. The expected fluxes were below levels necessary to produce significant isomeric yields in this energy range. Next, experiments were conducted in accordance with standard neutron activation-foil techniques to directly measure any fluxes of neutrons in the accelerator environments. Measurements for fast neutron fluxes were completely negative under even the most likely conditions with a 6 MeV medical linac. Measurable fluxes of thermal and epithermal neutrons were obtained. However, in typical cases the amount of isomeric activation due to “slow” neutrons was 1% of the total activation and 6% in the worst case based on measured fluxes and known values of cross sections. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
An innovative accelerator-based neutron source for boron neutron capture therapy has started operation at the Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using 7Li(p,n)7Be threshold reaction.In the article, techniques to detect neutron and gamma-rays at the facility are described. Gamma radiation is measured with NaI and BGO gamma-spectrometers. The total yield of neutrons is determined by measuring the 477 keV γ-quanta from beryllium decay. For the rough analysis of the generated neutron spectrum we used bubble detectors. As the epithermal neutrons are of interest for neutron capture therapy the NaI detector is used as activation detector. We plan to use a time-of-flight technique for neutron spectra measurement. To realize this technique a new solution of short time neutron generation is proposed.  相似文献   

18.
The Resistive Plate Chamber (RPC) has been developed in many application areas ever since its introduction, from high energy physics experiments to positron emission tomography. Such detectors can be coated with a Gd layer that enables them to detect thermal neutrons. Consequently these RPCs can be utilized for industrial and medical purposes. Here, we present the configuration of a resistive plate chamber which is utilized to detect thermal neutrons by employing GEANT4 Monte Carlo code. The response of the RPC was evaluated as a function of neutron energy in the GEANT4 Monte Carlo code. The simulation results are taken for incident neutron energy in the energy range from 25 meV to 100 meV. The detection efficiency was found to be between 10% and 20%, depending on the detector configuration, for incident thermal neutrons of 25 meV energy.  相似文献   

19.
Photon fluence spectra of the Seibersdorf Labor/BEV Picker 60Co therapy unit were calculated using two generally recognised Monte Carlo codes, PENELOPE-2006 and MCNP5. The complexity of the simulation model was increased in three steps (from a pure source capsule and a simplified model using rotational symmetry to a realistic model of the facility). Photon fluence spectra of both codes generally agree within their statistical standard uncertainties for the case of identical geometry set-up and particle transport parameter settings. Resulting total fluence values were about 0.3% higher for MCNP as compared to PENELOPE. The verification of the simulated photon fluence spectra was based upon depth–dose measurements in water performed with a PTW 31003 ionisation chamber and a thick-walled chamber type CC01. The depth–dose curve calculated with PENELOPE agreed with the curve obtained from measurements within 0.4% across the available depth region in the 30 cm × 30 cm × 30 cm water phantom. The comparison of measured and simulated beam quality indices (TPR20,10) revealed deviations of less than 0.2%.  相似文献   

20.
硼中子俘获治疗(Boron Neutron Capture Therapy,BNCT)是一种新型的精准放射治疗方法,束流整形组件(Beam Shaping Assembly,BSA)作为硼中子俘获治疗装置的重要组成部分,对于产生适用于BNCT的中子束至关重要.通过BSA可以将快中子慢化到适当的能量范围,并且减少其他不需...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号