首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents various formulations of characteristics-based schemes in the framework of the artificial-compressibility method for variable-density incompressible flows. In contrast to constant-density incompressible flows, where the characteristics-based variables reconstruction leads to a single formulation, in the case of variable density flows three different schemes can be obtained henceforth labeled as: transport, conservative and hybrid schemes. The conservative scheme results in pseudo-compressibility terms in the (multi-species) density reconstruction. It is shown that in the limit of constant density, the transport scheme becomes the (original) characteristics-based scheme for incompressible flows, but the conservative and hybrid schemes lead to a new characteristics-based variant for constant density flows. The characteristics-based schemes are combined with second and third-order interpolation for increasing the computational accuracy locally at the cell faces of the control volume. Numerical experiments for constant density flows reveal that all the characteristics-based schemes result in the same flow solution, but they exhibit different convergence behavior. The multigrid implementation and numerical studies for variable density flows are presented in Part II of this study.  相似文献   

2.
三维不可压N-S方程的多重网格求解   总被引:2,自引:0,他引:2  
袁礼 《计算物理》2002,19(1):23-29
应用全近似存储(Full Approximation Storage,FAS)多重网格法和人工压缩性方法求解了三维不可压Navi-er-Stokes方程.在解粗网格差分方程时,对Neumann边界条件采用增量形式进行更新,离散方程用对角化形式的近似隐式因子分解格式求解,其中空间无粘项分别用MUSCL格式和对称TVD格式进行离散.对90°弯曲的方截面管道流动和4:1椭球体层流绕流的数值模拟表明,多重网格的计算时间比单重网格节省一半以上,且无限制函数的MUSCL格式比TVD格式对流动结构有更好的分辨能力.  相似文献   

3.
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection–diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33–53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier–Stokes equations using the stream function–vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.  相似文献   

4.
In this paper, the revised characteristics-based (CB) method for incompressible flows recently derived by Neofytou [P. Neofytou, Revision of the characteristic-based scheme for incompressible flows, J. Comput. Phys. 222 (2007) 475–484] has been further investigated. We have derived all the formulas for pressure and velocities from this revised CB method, which is based on the artificial compressibility method (ACM) [A.J. Chorin, A numerical solution for solving incompressible viscous flow problems, J. Comput. Phys. 2 (1967) 12]. Then we analyze the formulations of the original CB method [D. Drikakis, P.A. Govatsos, D.E. Papatonis, A characteristic based method for incompressible flows, Int. J. Numer. Meth. Fluids 19 (1994) 667–685; E. Shapiro, D. Drikakis, Non-conservative and conservative formulations of characteristics numerical reconstructions for incompressible flows, Int. J. Numer. Meth. Eng. 66 (2006) 1466–1482; D. Drikakis, P.K. Smolarkiewicz, On spurious vortical structures, J. Comput. Phys. 172 (2001) 309–325; F. Mallinger, D. Drikakis, Instability in three-dimensional, unsteady stenotic flows, Int. J. Heat Fluid Flow 23 (2002) 657–663; E. Shapiro, D. Drikakis, Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species flows. Parts I. Derivation of different formulations and constant density limit, J. Comput. Phys. 210 (2005) 584–607; Y. Zhao, B. Zhang, A high-order characteristics upwind FV method for incompressible flow and heat transfer simulation on unstructured grids, Comput. Meth. Appl. Mech. Eng. 190 (5–7) (2000) 733–756] to investigate their consistency with the governing flow equations after convergence has been achieved. Furthermore we have implemented both formulations in an unstructured-grid finite volume solver [Y. Zhao, B. Zhang, A high-order characteristics upwind FV method for incompressible flow and heat transfer simulation on unstructured grids, Comput. Meth. Appl. Mech. Eng. 190 (5–7) (2000) 733–756]. Detailed numerical experiments show that both methods give almost identical solutions and convergence rates. Both can generate solutions which agree well with published results and experimental measurements. We thus conclude that both methods, being upwind schemes designed for the ACM, have the same performances in terms of accuracy and convergence speed, even though the revised method is more complex with less stringent assumptions made, while the original CB method is simpler due to the use of extra simplifying assumptions.  相似文献   

5.
Higher order discretization has not been widely successful in industrial applications to compressible flow simulation. Among several reasons for this, one may identify the lack of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned lower order methods, such as finite-volume schemes. In this paper we investigate solution algorithms in conjunction with high-order Spectral Difference discretization for the Euler equations, using such techniques as multigrid and matrix-free implicit relaxation methods. In particular we present a novel hybrid multilevel relaxation method that combines (optionally matrix-free) implicit relaxation techniques with explicit multistage smoothing using geometric multigrid. Furthermore, we discuss efficient implementation of these concepts using such tools as automatic differentiation.  相似文献   

6.
扩散方程的守恒型并行计算格式   总被引:4,自引:4,他引:0  
袁光伟  杭旭登 《计算物理》2010,27(4):475-491
辐射流体力学实际问题计算中扩散方程的计算量极大,必须采用并行计算.研究易于在并行机上实施的高效的并行计算方法,通过采用预估修正等多种方式,构造和发展既保持隐式格式的守恒性、同时能保持所需精度与无条件稳定性的并行计算格式,以满足大规模数值求解辐射流体力学问题的需求.  相似文献   

7.
The steady incompressible Navier–Stokes equations in three dimensions are solved for neutral and stably stratified flow past three-dimensional obstacles of increasing spanwise width. The continuous equations are approximated using a finite volume discretisation on staggered grids with a flux-limited monotonic scheme for the advective terms. The discrete equations which arise are solved using a nonlinear multigrid algorithm with up to four grid levels using the SIMPLE pressure correction method as smoother. When at its most effective the multigrid algorithm is demonstrated to yield convergence rates which are independent of the grid density. However, it is found that the asymptotic convergence rate depends on the choice of the limiter used for the advective terms of the density equation, and some commonly used schemes are investigated. The variation with obstacle width of the influence of the stratification on the flow field is described and the results of the three-dimensional computations are compared with those of the corresponding computation of flow over a two-dimensional obstacle (of effectively infinite width). Also given are the results of time-dependent computations for three-dimensional flows under conditions of strong static stability when lee-wave propagation is present and the multigrid algorithm is used to compute the flow at each time step.  相似文献   

8.
The direct numerical simulation of receptivity, instability and transition of hypersonic boundary layers requires high-order accurate schemes because lower-order schemes do not have an adequate accuracy level to compute the large range of time and length scales in such flow fields. The main limiting factor in the application of high-order schemes to practical boundary-layer flow problems is the numerical instability of high-order boundary closure schemes on the wall. This paper presents a family of high-order non-uniform grid finite difference schemes with stable boundary closures for the direct numerical simulation of hypersonic boundary-layer transition. By using an appropriate grid stretching, and clustering grid points near the boundary, high-order schemes with stable boundary closures can be obtained. The order of the schemes ranges from first-order at the lowest, to the global spectral collocation method at the highest. The accuracy and stability of the new high-order numerical schemes is tested by numerical simulations of the linear wave equation and two-dimensional incompressible flat plate boundary layer flows. The high-order non-uniform-grid schemes (up to the 11th-order) are subsequently applied for the simulation of the receptivity of a hypersonic boundary layer to free stream disturbances over a blunt leading edge. The steady and unsteady results show that the new high-order schemes are stable and are able to produce high accuracy for computations of the nonlinear two-dimensional Navier–Stokes equations for the wall bounded supersonic flow.  相似文献   

9.
In this paper we develop numerical fluxes of the centred type for one-step schemes in conservative form for solving general systems of conservation laws in multiple-space dimensions on structured meshes. The proposed method is an extension of the multidimensional FORCE flux developed by Toro et al. (2009) [14]. Here we introduce upwind bias by modifying the shape of the staggered mesh of the original FORCE method. The upwind bias is evaluated using an estimate of the largest eigenvalue, which in any case is needed for selecting a time step. The resulting basic flux is first-order accurate and monotone. For the linear advection equation, the proposed UFORCE method reproduces exactly the upwind Godunov method. Extension to non-linear systems has been done empirically via the two-dimensional inviscid shallow water equations. Second order of accuracy in space and time on structured meshes is obtained in the framework of finite volume methods. The proposed method improves the accuracy of the solution for small Courant numbers and intermediate waves associated with linearly degenerate fields (contact discontinuities, shear waves and material interfaces). It achieves comparable accuracy to that of upwind methods with approximate Riemann solvers, though retaining the simplicity and efficiency of centred methods. The performance of the schemes is assessed on a suite of test problems for the two-dimensional shallow water equations.  相似文献   

10.
During the past decade gas-kinetic methods based on the BGK simplification of the Boltzmann equation have been employed to compute fluid flow in a finite-difference or finite-volume context. Among the most successful formulations is the finite-volume scheme proposed by Xu [K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171 (48) (2001) 289–335]. In this paper we build on this theoretical framework mainly with the aim to improve the efficiency and convergence of the scheme, and extend the range of application to three-dimensional complex geometries using general unstructured meshes. To that end we propose a modified BGK finite-volume scheme, which significantly reduces the computational cost, and improves the behavior on stretched unstructured meshes. Furthermore, a modified data reconstruction procedure is presented to remove the known problem that the Chapman–Enskog expansion of the BGK equation fixes the Prandtl number at unity. The new Prandtl number correction operates at the level of the partial differential equations and is also significantly cheaper for general formulations than previously published methods. We address the issue of convergence acceleration by applying multigrid techniques to the kinetic discretization. The proposed modifications and convergence acceleration help make large-scale computations feasible at a cost competitive with conventional discretization techniques, while still exploiting the advantages of the gas-kinetic discretization, such as computing full viscous fluxes for finite volume schemes on a simple two-point stencil.  相似文献   

11.
针对结构自适应加密网格(SAMR)上扩散方程的求解,分析几种有限体格式的逼近性,同时设计和分析一种两层网格算法.首先,讨论一种常见的守恒型有限体格式,并给出网格加密区域和细化/粗化插值算子的条件;接着,通过在粗细界面附近引入辅助三角形单元,消除粗细界面处的非协调单元,设计了一种保对称有限体元(SFVE)格式,分析表明,该格式具有更好的逼近性,且对网格加密区域和插值算子的限制更弱;最后,为SFVE格式构造一种两层网格(TL)算法,理论分析和数值实验表明该算法的一致收敛性.  相似文献   

12.
We present a new multigrid scheme for solving the Poisson equation with Dirichlet boundary conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed in the context of the Adaptive Mesh Refinement (AMR) schemes based on a graded-octree data structure. The Poisson equation is solved on a level-by-level basis, using a “one-way interface” scheme in which boundary conditions are interpolated from the previous coarser level solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows requiring an adaptive time stepping strategy. By constructing a multigrid hierarchy covering the active cells of each AMR level, we have designed a memory-efficient algorithm that can benefit fully from the multigrid acceleration. We present a simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of the multigrid levels. In case of very complex boundaries, small scale features become smaller than the discretization cell size of coarse multigrid levels and convergence problems arise. We propose a simple solution to address these issues. Using our scheme, the convergence rate usually depends on the grid size for complex grids, but good linear convergence is maintained. The proposed method was successfully implemented on distributed memory architectures in the RAMSES code, for which we present and discuss convergence and accuracy properties as well as timing performances.  相似文献   

13.
In this paper, we propose a semi-Lagrangian finite difference formulation for approximating conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes [5], [25], which approximate the advective form of the equation via direct characteristics tracing, the scheme proposed in this paper approximates the conservative form of the equation. This essential difference makes the proposed scheme naturally conservative for equations with general variable coefficients. The proposed conservative semi-Lagrangian finite difference framework is coupled with high order essentially non-oscillatory (ENO) or weighted ENO (WENO) reconstructions to achieve high order accuracy in smooth parts of the solution and to capture sharp interfaces without introducing spurious oscillations. The scheme is extended to high dimensional problems by Strang splitting. The performance of the proposed schemes is demonstrated by linear advection, rigid body rotation, swirling deformation, and two dimensional incompressible flow simulation in the vorticity stream-function formulation. As the information is propagating along characteristics, the proposed scheme does not have the CFL time step restriction of the Eulerian method, allowing for a more efficient numerical realization for many application problems.  相似文献   

14.
In this paper we detail a fast, fully-coupled, partitioned fluid–structure interaction (FSI) scheme. For the incompressible fluid, new fractional-step algorithms are proposed which make possible the fully implicit, but matrix-free, parallel solution of the entire coupled fluid–solid system. These algorithms include artificial compressibility pressure-poisson solution in conjunction with upwind velocity stabilisation, as well as simplified pressure stabilisation for improved computational efficiency. A dual-timestepping approach is proposed where a Jacobi method is employed for the momentum equations while the pressures are concurrently solved via a matrix-free preconditioned GMRES methodology. This enables efficient sub-iteration level coupling between the fluid and solid domains. Parallelisation is effected for distributed-memory systems. The accuracy and efficiency of the developed technology is evaluated by application to benchmark problems from the literature. The new schemes are shown to be efficient and robust, with the developed preconditioned GMRES solver furnishing speed-ups ranging between 50 and 80.  相似文献   

15.
The design of a new, truly robust multigrid framework for the solution of steady-state Reynolds-Averaged Navier–Stokes (RANS) equations with two-equation turbulence models is presented. While the mean-flow equations and the turbulence model equations are advanced in time in a loosely-coupled manner, their multigrid cycling is strongly coupled (FC-MG). Thanks to the loosely-coupled approach, the unconditionally positive-convergent implicit time-integration scheme for two-equation turbulence models (UPC) is used. An improvement to the basic UPC scheme convergence characteristics is developed and its extension within the multigrid method is proposed. The resulting novel FC-MG-UPC algorithm is nearly free of artificial stabilizing techniques, leading to increased multigrid efficiency. To demonstrate the robustness of the proposed algorithm, it is applied to linear and non-linear two-equation turbulence models. Numerical experiments are conducted, simulating separated flow about the NACA4412 airfoil, transonic flow about the RAE2822 airfoil and internal flow through a plane asymmetric diffuser. Results obtained from numerical simulations demonstrate the strong consistency and case-independence of the method.  相似文献   

16.
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.  相似文献   

17.
Starting from the gas-kinetic model, a new class of relaxation schemes for the Euler equations is presented. In contrast to the Riemann solver, these schemes provide a multidimensional dynamical gas evolution model, which combines both Lax-Wendroff and kinetic flux vector splitting schemes, and their coupling is based on the fact that a nonequilibrium state will evolve into an equilibrium state along with the increase of entropy. The numerical fluxes are constructed without getting into the details of the particle collisions. The results for many well-defined test cases are presented to indicate the robustness and accuracy of the current scheme.  相似文献   

18.
孤立波方程的保结构算法   总被引:4,自引:0,他引:4  
王雨顺  王斌  季仲贞 《计算物理》2004,21(5):386-400
讨论了孤立波方程的保结构差分算法,以一些经典的孤立波方程为例,如KdV,sine-Gordon,K-P方程,给出了它们的辛和多辛结构,说明辛和多辛算法的可适用性.提出局部守恒算法和广义保结构算法的概念,它们是保结构算法的概念自然推广.还给出一种能系统构造局部守恒格式的复合方法.数值例子说明,保结构数值能很好模拟各种孤立波的演化。  相似文献   

19.
张林  葛永斌 《计算物理》2020,37(3):307-319
针对二维非定常半线性扩散反应方程,空间导数项采用四阶紧致差分公式离散,时间导数项采用四阶向后Euler公式进行离散,提出一种无条件稳定的高精度五层全隐格式.格式截断误差为Oτ4+τ2h2+h4),即时间和空间均具有四阶精度.对于第一、二、三时间层采用Crank-Nicolson方法进行离散,并采用Richardson外推公式将启动层时间精度外推到四阶.建立适用于该格式的多重网格方法,加快在每个时间层上迭代求解代数方程组的收敛速度,提高计算效率.最后通过数值实验验证格式的精确性和稳定性以及多重网格方法的高效性.  相似文献   

20.
A high-order incompressible flow solver with WENO   总被引:1,自引:0,他引:1  
A numerical method for solving the incompressible Navier–Stokes equations with a 5th-order weighted essentially non-oscillatory (WENO) scheme is presented. The method is not based on artificial compressibility and is free of tunable parameters such as the artificial compressibility parameter. The method makes use of the fractional-step method in conjunction with the low-dissipation and low-dispersion Runge–Kutta (LDDRK) scheme to improve temporal accuracy of the scheme. The use of a WENO scheme makes it possible to obtain stable solutions for discontinuous initial data and resolve difficult applications with strong shear such as Kelvin–Helmholtz instability or turbulence. Good convergence rate is established for the velocity variables and numerical solutions of the present method compare well with exact solutions and other numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号