首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
现在诱惑态已被证明是一种可以大大提高量子密钥分发安全性能的现实可行的方法.由于考虑到现实应用中激光器在调制过程中的消光比不能做到100%,以及激光器固有的自发辐射因而使得制备真空态并不是一件容易的事情. 因此本文将对理想情况下准单光子光源量子密钥分发系统应用中的诱惑态结论作了补充和扩展,提出了两个弱光强态的诱惑态方案和一个弱光强诱惑态方案.最后,将“双探测器”的理论应用在准单光子源(HSPS)光源系统中,使系统的安全传输距离可达到2215km,比使用普通探测器的系统增加了约50km. 关键词: 量子密钥分发 诱惑态 HSPS光源 双探测器  相似文献   

2.
诱惑态方法和非正交编码协议可以有效的抵制光子数分束攻击,所以近来得到了广泛的关注.这里结合了这两种方法提出了一种新方案,光源采用呈泊松分布的参量下转换光子对,发送方随机的改变抽运光的强度获得不同强度的信号光,信号态用来产生密钥,诱惑态用来监测窃听,并估算单光子和两光子的计数率和量子误码率,模拟了密钥产生率与传输距离的关系曲线,分析了该方案可以进一步提高安全量子密钥分发的性能.  相似文献   

3.
独立推导预报单光子源诱骗态量子密钥分发的密钥产生率计算公式,讨论密钥产生率和发送端探测效率的关系;进行弱相干光和预报单光子源诱骗态量子密钥分发的最优强度估计和密钥产生率数值计算.结果表明,预报单光子源诱骗态量子密钥分发的密钥产生率随着发送端探测效率的增加而增加,其安全通信距离与完美单光子源的通信距离一致;诱骗态量子密钥分发可提高安全通信距离和密钥产生率;预报单光子源由于减少了暗计数的影响,进一步提高了安全通信距离.  相似文献   

4.
王涵  闫连山  潘炜  罗斌  郭振  徐明峰 《物理学报》2011,60(3):30304-030304
单光子的衰减特性及其易受干扰的缺点限制了纯单光子量子系统的传输码率及距离.弱相干光脉冲(WCP)光源和准单光子源(HSPS)则具有更高的实用价值.本文将这两种光源和诱发态方案相结合并采用Lütkenhaus和Gottesman-Lo- Lütkenhaus-Preskill (GLLP)两种数据后处理方法进行性能分析.仿真结果表明:HSPS在传输距离上要优于WCP,对应相同传输距离时系统量子误码率(QBER)要小些,但相对密钥生成率低. 关键词: 量子密钥分配 诱发态 WCP光源 HSPS光源  相似文献   

5.
The number of transmitted signals in practical quantum key distribution (QKD) protocol is always finite. We discuss the security of decoy states QKD protocol with finite resources by considering the statistical fluctuation for the yield and error rate of the quantum state in different sources of pulses (signal sources and decoy sources). The number of exchanged quantum signals vs positive key generation rate is given with experiment results.  相似文献   

6.
A new decoy state method has been presented to tighten the lower bound of the key generation rate for BB84 using one decoy state and one signal state. It can give us different lower and upper bounds of the fraction of single-photon counts and single-photon QBER, respectively, for one decoy state protocol. We have also analyzed the feasibility of performing quantum key distribution (QKD), with different exiting protocols, in earth-satellite and intersatellite links. Our simulation shows the choice of intensity of signal state and the effect of choosing the number of decoy states on key generation rate. The final key rate over transmission distance has been simulated, which shows that security proofs give a zero key generation rate at long distances (larger than 16,000 km). It has been shown that the practical QKD can be established with low earth orbit and medium earth orbit satellites.  相似文献   

7.
The quantum key distribution(QKD) allows two parties to share a secret key by typically making use of a one-way quantum channel However,the two-way QKD has its own unique advantages,which means the two-way QKD has become a focus recently.To improve the practical performance of the two-way QKD,we present a security analysis of a two-way QKD protocol based on the decoy method with heralded single-photon sources(HSPSs).We make use of two approaches to calculate the yield and the quantum bit error rate of single-photon and two-photon pulses.Then we present the secret key generation rate based on the GLLP formula.The numerical simulation shows that the protocol with HSPSs has an advantage in the secure distance compared with weak coherent state sources.In addition,we present the final secret key generation rate of the LM05 protocol with finite resources by considering the statistical fluctuation of the yield and the error rate.  相似文献   

8.
We have presented a method to estimate parameters of the decoy state method based on one decoy state protocol for SARG04. This method has given lower bound of the fraction of single-photon counts (y 1), the fraction of two-photon counts (y 2), the upper bound QBER of single-photon pulses (e 1), the upper bound QBER of two-photon pulses (e 2), and the lower bound of key generation rate for both BB84 and SARG04. The numerical simulation has shown that the fiber based QKD and free space QKD systems using the proposed method for BB84 are able to achieve both a higher secret key rate and greater secure distance than that of SARG04. Also, it is shown that bidirectional ground to satellite and inter-satellite communications are possible with our protocol.  相似文献   

9.
Security of a quantum secret sharing of quantum state protocol proposed by Guo et al. [Chin. Phys. Lett. 25 (2008) 16] is reexamined. It is shown that an eavesdropper can obtain some of the transmitted secret information by monitoring the classical channel or the entire secret by intercepting the quantum states, and moreover, the eavesdropper can even maliciously replace the secret message with an arbitrary message without being detected. Finally, the deep reasons why an eavesdropper can attack this protocol are discussed and the modified protocol is presented to amend the security loopholes.  相似文献   

10.
Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday- Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120 km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol.  相似文献   

11.
周媛媛  周学军  田培根  王瑛剑 《中国物理 B》2013,22(1):10305-010305
Combining the passive decoy-state idea with the active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state photon source for quantum key distribution. Two special cases of this protocol are deduced, i.e., a one-vacuum-and-one-weak-decoy-state protocol and a one-weak-decoy-state protocol. In these protocols, the sender prepares decoy states actively, which avoids the crude estimation of parameters in the SARG04 passive decoy-state method. With the passive decoy-state idea, the detection events on Bob’s side that are non-triggered on Alice’s side are not discarded, but used to estimate the fractions of single-photon and two-photon pulses, which offsets the limitation of the detector’s low efficiency and overcomes the shortcoming that the performance of the active decoy-state protocol critically depends on the efficiency of detector. The simulation results show that the combination of the active and passive decoy-state ideas increases the key generation rate. With a one-vacuum-and-two-weak-decoy-state protocol, one can achieve a key generation rate that is close to the theoretical limit of an infinite decoy-state protocol. The performance of the other two protocols is a little less than with the former, but the implementation is easier. Under the same condition of implementation, higher key rates can be obtained with our protocols than with existing methods.  相似文献   

12.
In this paper, we consider the controllably secure quantum key distribution (QKD) with coherent source, i.e., the practical decoy state QKD with finite resource is studied within the scope of some controllable security parameters. Our simulation shows the controllably secure QKD is more resource-consuming compared with the practical decoy QKD with relatively statistical fluctuation. However, further numerically solutions show that both protocols agree well with each other in the asymptotic limit, where the resource is large enough but not infinite. Our work shows the dark counts will contribute apparently to the transmission distance when communication distance approaches to the asymptotic limit. It also shows that both the secure transmission distance and the rate of the secure final key can be increased apparently when the security estimation parameters are not fixed but numerically optimized.  相似文献   

13.
焦荣珍  张文翰 《物理学报》2009,58(4):2189-2192
采用包含两个伪态和一个信号态的双伪态协议分析了量子密钥分配系统的性能,比较了双伪态(真空态—弱伪态)和单伪态协议条件下密钥生成率与通信距离的关系,分析了信号态的强度、量子比特误码率、单光子的增益和单光子的误码率对系统密钥生成率的影响,得出密钥生成率的最优化条件,为实现实用安全的量子密钥分配系统奠定理论基础. 关键词: 伪态协议 量子密钥生成率 量子比特误码率  相似文献   

14.
Round-robin differential phase shift(RRDPS) is a novel quantum key distribution protocol which can bound information leakage without monitoring signal disturbance. In this work, to decrease the effect of the vacuum component in a weak coherent pulses source, we employ a practical decoy-state scheme with heralded singlephoton source for the RRDPS protocol and analyze the performance of this method. In this scheme, only two decoy states are needed and the yields of single-photon state and multi-photon states, as well as the bit error rates of each photon states, can be estimated. The final key rate of this scheme is bounded and simulated over transmission distance. The results show that the two-decoy-state method with heralded single-photon source performs better than the two-decoy-state method with weak coherent pulses.  相似文献   

15.
孙颖  赵尚弘  东晨 《物理学报》2015,64(14):140304-140304
针对量子中继器短时间内难以应用于长距离量子密钥分配系统的问题, 提出了基于量子存储的长距离测量设备无关量子密钥分配协议, 分析了其密钥生成率与存储效率、信道传输效率和安全传输距离等参数间的关系, 研究了该协议中量子存储单元的退相干效应对最终密钥生成率的影响, 比较了经典测量设备无关量子密钥分配协议和基于量子存储的测量设备无关量子密钥分配协议的密钥生成率与安全传输距离的关系. 仿真结果表明, 添加量子存储单元后, 协议的安全传输距离由无量子存储的216 km增加至500 km, 且量子存储退相干效应带来的误码对最终的密钥生成率影响较小. 实验中可以采取调节信号光强度的方式提高测量设备无关量子密钥分配系统的密钥生成率, 为实用量子密钥分配实验提供了重要的理论参数.  相似文献   

16.
周媛媛  周学军 《物理学报》2011,60(10):100301-100301
基于改造的弱相干态光源,提出了一种非正交编码被动诱骗态量子密钥分配方案.该方案不主动制备诱骗态,而是根据发送端探测器是否响应,将接收端的探测结果分为响应集合和未响应集合,以此分别作为信号态和诱骗态,并利用这两个集合来估计参量和生成密钥.数值仿真表明,非正交编码被动诱骗态方案的密钥生成效率和安全传输距离都优于现有的被动诱骗态方案,且性能非常接近主动无穷诱骗态方案的理论极限值;未响应集合对密钥生成的参与使方案性能免受发送端探测效率的影响,弥补了实际探测器探测效率低下的缺陷;由于不需要主动制备诱骗态,该方案实现非常简单,适用于高速量子密钥分配的场合. 关键词: 量子光学 量子密钥分配 被动诱骗态 密钥生成效率  相似文献   

17.
Zhao Y  Qi B  Ma X  Lo HK  Qian L 《Physical review letters》2006,96(7):070502
To increase dramatically the distance and the secure key generation rate of quantum key distribution (QKD), the idea of quantum decoys--signals of different intensities--has recently been proposed. Here, we present the first experimental implementation of decoy state QKD. By making simple modifications to a commercial quantum key distribution system, we show that a secure key generation rate of 165 bit/s, which is 1/4 of the theoretical limit, can be obtained over 15 km of a telecommunication fiber. We also show that with the same experimental parameters, not even a single bit of secure key can be extracted with a non-decoy-state protocol. Compared to building single photon sources, decoy state QKD is a much simpler method for increasing the distance and key generation rate of unconditionally secure QKD.  相似文献   

18.

Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.

  相似文献   

19.
We show that non-maximally entangled states can be used to build a quantum key distribution (QKD) scheme where the key is probabilistically teleported from Alice to Bob. This probabilistic aspect of the protocol ensures the security of the key without the need of non-orthogonal states to encode it, in contrast to other QKD schemes. Also, the security and key transmission rate of the present protocol is nearly equivalent to those of standard QKD schemes and these aspects can be controlled by properly harnessing the new free parameter in the present proposal, namely, the degree of partial entanglement. Furthermore, we discuss how to build a controlled QKD scheme, also based on partially entangled states, where a third party can decide whether or not Alice and Bob are allowed to share a key.  相似文献   

20.
We study the possible application of the decoy state method on a basic two way quantum key distribution (QKD) scheme to extend its distance. Noting the obvious advantage of such a QKD scheme in allowing for single as well as double photon contributions, we derive relevant lower bounds on the corresponding gains in a practical decoy state implementation using two intensities for decoy states. We work with two different approaches in this vein and compare these with an ideal infinite decoy state case as well as the simulation of the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号