首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
以棉纤维素为原料,采用硫酸水解法制备了纳米纤维素晶须.以N,N-二甲基甲酰胺(DMF)为分散介质,二甲基氨基吡啶(DMAP)为催化剂,十二烯基琥珀酸酐为酯化剂对纳米纤维素晶须进行化学改性,得到了一系列取代程度不同的改性产物(记为DCNW).采用红外光谱(FTIR)、X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对DCNW的结构和性能进行了分析和表征.选择表面取代度为0.3的改性产物作为复合材料的增强相.该改性产物能在丙酮中均匀分散和稳定悬浮,并且保持了改性前纳米纤维素晶须的棒状形态和高结晶度.将其分散于环氧单体中,通过浇铸法制备了纳米复合材料,考察了改性纳米纤维素晶须添加量对纳米复合材料拉伸性能、动态力学性能及耐湿热性的影响规律.结果表明,与空白环氧树脂相比,添加了改性纳米纤维素晶须的纳米复合材料的拉伸强度、杨氏模量和断裂伸长率都得到了提高.玻璃化转变温度、耐湿热性也得到了显著改善.其中,当改性纳米纤维素晶须的添加量为3.5%时,拉伸强度从纯环氧的39.85 MPa提高到72.33 MPa,增加了82%;杨氏模量增大了21%;断裂伸长率从纯环氧树脂的2.45%提高到7.29%,增加了198%;Tg值从纯环氧的103.4℃,提高到134.1℃;吸水率从1.9%下降到1.4%.  相似文献   

2.
利用水相连续法实现了纳米纤维素晶体(NCC)的高碘酸钠氧化及阳离子化,然后将阳离子化纳米纤维素晶体(CDAC)悬浮液与壳聚糖(CTS)醋酸溶液混合,并采用流延法制得壳聚糖-纳米纤维素(CTS-CDAC)复合膜。采用红外光谱(FT-IR)、透射电镜(TEM)、X射线衍射(XRD)、Zeta电位及粒径分析表征了改性前后NCC的结构与性能,并研究了制得的CDAC悬浮液与CTS醋酸溶液混合时的相容性及CTS-CDAC复合膜中CDAC质量分数对复合膜力学性能、水溶胀性的影响。结果表明:CDAC悬浮液与CTS醋酸溶液混合时相容性良好,CDAC在CTS基质中分散均匀,CTS-CDAC复合膜的力学性能较纯CTS膜明显提高。当复合膜中CDAC的质量分数为12%时,拉伸强度达到最高。另外,CTS-CDAC复合膜在水中的溶胀度较纯CTS膜明显降低,稳定性变好。  相似文献   

3.
纤维素是一种天然存在于有机物或植物中储量巨大的可再生资源。醋酸纤维素是在催化剂的作用下,将纤维素的羟基酯化而得到的一种热塑性树脂。由于其具有稳定,易于加工,不易燃烧,生物可降解性等特点,常用来替代天然纤维素作为静电纺丝的原料。静电纺丝技术作为目前制备纳米纤维材料的一种简单有效的方法,近些年来一直备受关注。本文系统介绍了以醋酸纤维素为静电纺丝的基体材料, 通过添加纳米粒子、聚合物溶液、表面改性、同轴电纺等物理改性方法以及再生纤维处理和硝化反应等化学改性方法制备改性醋酸纤维素纤维, 讨论了改性后的新材料结构和性能等多方面的变化。综述了近几年来国内外关于以静电纺丝法制备改性醋酸纤维素纤维的研究进展以及其在生物医药、组织工程支架、过滤膜以及功能性织物等方面的应用前景。  相似文献   

4.
利用碱脲溶剂低温溶解纤维素,在该体系中掺杂一定比例的全硫化羧基丁苯弹性纳米粒子,制备了纤维素/全硫化弹性纳米粒子复合膜.通过透射电镜、扫描电镜、WAXD、固体核磁共振、热分析和力学性能测试等对该复合膜的结构和性能进行了表征.结果表明,全硫化羧基丁苯弹性纳米粒子(CSB ENP)均匀的分散在具有微纳孔洞结构的纤维素基体中.CSB ENP的引入对纤维素再生过程中的结晶性影响不大.纤维素/全硫化弹性纳米粒子复合膜具有良好的透光性,并且热稳定性也有所提高.加入少量的CSB ENP可以增韧纤维素膜,且能保持良好的力学性能.当CSB ENP的含量为5 wt%时复合膜的断裂拉伸强度和断裂伸长率同时得到了提高.  相似文献   

5.
以纤维素为原料、苯甲酰氯为酯化剂的条件下合成了纤维素苯甲酸酯(CB), 通过控制苯甲酰氯的量得到了不同取代度的CB, 且不同取代度的CB 在苯、环己烯和环己烷中的溶胀度不同. 将CB 与正丁醇还原得到的单分散Ru 纳米簇进行杂化后得到Ru/CB 杂化膜, 并将其用于催化苯选择加氢反应. 利用傅立叶转换红外光谱仪, X-射线光电子能谱,X-射线衍射和透射电子显微镜对不同取代度的CB 和杂化膜的结构与性能进行了表征. 研究发现, 杂化膜的溶胀度是影响苯的转化率和环己烯选择性的重要因素. 活性评价结果表明, 苯的转化率随着取代度的增大而增大, 最高为2.8%;环己烯的选择性随取代度的增大而减小, 最高为53.4%.  相似文献   

6.
制备得到纳米纤维素(NC),其为横向尺寸20~40 nm、长度400~2000 nm的纳米丝.对NC进行醋酸酯化疏水改性得到醋酸酯化纳米纤维素(ANC).分别将NC和ANC与聚乳酸(PLA)复合制备纳米复合材料,研究了NC添加量、疏水改性及与PLA的复合方式对PLA力学性能和结晶性能的影响规律.结果表明,采用溶液浇铸法制备纳米复合膜时,ANC在PLA基体中的分散性优于NC,但是对于复合膜拉伸性能的改善不明显.DSC等温结晶结果表明,ANC可以提高PLA的结晶度和结晶速率;采用熔融复合法制备的NC/PLA纳米复合材料,不仅保持了PLA的高强度、高模量和较高的热稳定性,而且显著改善了其韧性,当NC添加量为3.5%(质量分数)时,断裂伸长率比纯PLA提高了12.1倍.  相似文献   

7.
纳米微晶纤维素表面改性研究   总被引:11,自引:0,他引:11  
分别对纳米微晶纤维素(NCC)的表面进行醋酸酯化、羟乙基化和羟丙基化改性,利用FT-IR、TEM、13C-NMR、TGA对改性产物进行表征,研究不同的表面改性方法对纳米微晶纤维素性能的影响.结果表明,利用这几种方法改性后的NCC,经干燥后都可以重新分散在适当的溶剂中,且颗粒粒径没有明显变化,但不同改性产物的热性能有所差异.  相似文献   

8.
羟丙基醋酸纤维素反渗透膜   总被引:1,自引:0,他引:1  
研究了羟丙基醋酸纤维素反渗透膜的制膜工艺和膜性能。实验表明,以甘油—正丙醇或磷酸为添加剂,蒸发时间30—60s,预热处理温度70℃,时间3—5min,可得到在2MPa操作压力下,氯化钠脱除率95—98%,水通量1.0~2.1ml/cm~2·h的反渗透膜。羟丙基醋酸纤维素膜具有一定的耐热性,其使用温度上限比醋酸纤维素膜至少提高了10℃以上。羟丙基醋酸纤维素的溶解性能与醋酸纤维素相似。X射线衍射和热重分析显示羟丙基醋酸纤维素具有与醋酸纤维素相似的聚集态结构。  相似文献   

9.
纤维素超细纤维增强大豆分离蛋白透光复合膜性能研究   总被引:6,自引:1,他引:5  
以醋酸纤维素为原料, 由静电纺丝方法得到平均直径为430 nm的纤维素超细纤维, 将该纤维与大豆分离蛋白复合制备了一种新型的超细纤维增强透光复合膜. 采用扫描电镜、拉伸、三点弯曲和透光率试验等对其结构、力学和透光性进行了分析和表征. 结果表明: 超细纤维与大豆分离蛋白基体具有良好的界面相互作用; 超细纤维对复合材料起到了增强增韧的效果. 而且, 复合膜具有良好的透光率. 即使超细纤维质量分数达到13%, 该膜在700 nm波长处的透光率仍然可以达到77%.  相似文献   

10.
通过对电沉积法得到的Ni-Cu合金镀层进行电化学去合金化处理, 制备了纳米多孔结构金属镍膜. 采用循环伏安法对多孔金属镍膜在1 mol·L-1 KOH溶液中进行阳极氧化处理, 获得了纳米多孔结构的镍基复合膜电极. 应用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的膜电极的物理性质及赝电容特性进行了表征. SEM、XRD和XPS的测试结果表明, 所制备的纳米多孔结构镍基复合膜由Ni、Ni(OH)2和NiOOH组成. 电化学实验结果显示, 该复合膜在20 A·g-1的充放电电流密度下, 给出了578 F·g-1的初始比电容; 在1000次充放电循环后, 它的比电容值为544 F·g-1, 电容保持率为94%. 纳米多孔结构有利于KOH电解液的渗透, 从而促进反应物种在电极内部的传输; 纳米多孔的金属镍基体可以提高Ni(OH)2膜的电子导电性; 纳米大小的Ni(OH)2颗粒能够缩短质子的固相扩散路径. 上述因素是所制备的纳米多孔结构镍基复合膜电极具有优异赝电容特性的主要原因.  相似文献   

11.
Cellulose nanowhiskers (CNWs) were chemically modified by acetylating to obtain acetylated cellulose nanowhiskers (ACNWs) which could be well dispersed in acetone. The chemical modification was limited only on the surface of CNWs which was confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Surface substitution degree of ACNWs was evaluated to be 0.45 through X-ray photoelectron spectroscopy (XPS). Fully bioresource-based nanocomposite films were manufactured by incorporation of ACNWs into cellulose acetate (CA) using a casting/evaporation technique. Scanning electron microscope (SEM) demonstrated that ACNWs dispersed well in the CA matrix, which resulted in high transparency of all CA nanocomposites. The tensile strength, Young’s modulus and strain at break of all CA nanocomposites exhibited simultaneous increase in comparison with neat CA matrix. At the content of 4.5 wt% ACNWs, the tensile strength, Young’s modulus and strain at break of the CA nanocomposite film were increased by 9, 39, and 44 % respectively.  相似文献   

12.
Cellulose nanowhiskers (CNWs) were chemically modified with dodecenyl succinic anhydride to obtain hydrophobic CNWs called DCNWs. Surface modification was confirmed by infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The surface substitution degree determined by X-ray photoelectron spectroscopy was 0.30. Nanocomposites were prepared by incorporating different amounts of DCNWs pre-dispersed in a small amount of acetone into an epoxy matrix. Scanning electron microscope demonstrated that DCNWs dispersed well in the epoxy matrix. A strong interaction was proved between the DCNWs and epoxy matrix, as results of which the nanocomposites exhibited an obvious increase in T g by about 30 °C, simultaneous increases in tensile strength, Young’s modulus, and strain at break; and an improvement in the hydrothermal properties. Compared with the neat epoxy, the nanocomposite containing 3.5 wt% of DCNWs exhibited an increase in tensile strength by 82 %, Young’s modulus by 21 %, and a strain at break by 198 %.  相似文献   

13.
Cellulose acetate (CA) is one of the most important cellulose derivatives and its main applications are its use in membranes, films, fibers, plastics and filters. CAs are produced from cellulose sources such as: cotton, sugar cane bagasse, wood and others. One promissory source of cellulose is bacterial cellulose (BC). In this work, CA was produced from the homogeneous acetylation reaction of bacterial cellulose. Degree of substitution (DS) values can be controlled by the acetylation time. The characterization of CA samples showed the formation of a heterogeneous structure for CA samples submitted to a short acetylation time. A more homogeneous structure was produced for samples prepared with a long acetylation time. This fact changes the thermal behavior of the CA samples. Thermal characterization revealed that samples submitted to longer acetylation times display higher crystallinity and thermal stability than samples submitted to a short acetylation time. The observation of these characteristics is important for the production of cellulose acetate from this alternative source.  相似文献   

14.
The novel solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF . 3H(2)O) was studied for acetylation of linters cellulose. In order to control the degree of substitution (DS), acetylation of the macromolecule was carried out at different reaction time and temperature, molar ratio of reactants, as well as under variation of the concentration of TBAF . 3H(2)O in solution. Cellulose acetate (CA) was accessible with DS ranging from 0.43 to 2.77. The change in concentration of TBAF . 3H(2)O in DMSO showed a strong influence on DS. The most appropriate reaction conditions for acetylation of linters cellulose regarding maximal DS were evaluated. The structure of the CA was characterized by means of FTIR and NMR spectroscopy. The solubility of the CA depends not only on the DS but also on the reaction conditions applied, indicating a different distribution of acetate moieties both within and between polymer chains.  相似文献   

15.
The aim of the present work was to utilize waste leather buff (WLB) as filler in cellulose and make biocomposites for packaging applications such as wrappers. Cellulose was dissolved in the environmentally friendly ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). To this solution, WLB was added in amounts of 5 to 25 wt.% of cellulose. The cellulose and cellulose/WLB composite films were prepared by regenerating the corresponding cast solutions in a water coagulation bath followed by washing and drying. These films were tested for their tensile properties, thermal stability, and morphology. The tensile modulus and strength of the composite films were lower than those of the matrix. The lowering of the tensile modulus and strength with increasing WLB loading was attributed to the random orientation of the leather fibers of WLB in the composites. However, the % elongation at break of the composite films was found to be higher than that of the matrix and increased with increasing WLB content. The possible interaction between the matrix and WLB filler was probed using FT-IR analysis. The thermal stability of the composite films was higher than that of the matrix. The increase in thermal stability of the composite films was attributed to cross-linked collagen protein leather fibers in WLB. The fractographs of the composite films indicated good interfacial bonding between cellulose and leather fibers of WLB. These composite films may be considered for packaging and wrapping applications.  相似文献   

16.
Summary: Cellulose nanocrystals (CNC) were extracted from Kraft pulp of Eucalyptus urograndis. The CNC were isolated by acid hydrolysis with H2SO4 64% (w/w) solution, for 20 minutes at 45 °C. The morphology and crystallinity of the CNC were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The AFM image supports the evidence for the development of crystals of cellulose in nanometric scale. These nanoparticles were used as reinforcement material in carboxymethyl cellulose (CMC) matrix. Nanocomposites films were prepared by casting. The nanocomposites were characterized by thermal (TGA) and mechanical (DMA) analyses. A large reinforcing effect of the filler was observed. The tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and the thermal resistance increased slightly. The improvements in thermo-mechanical properties suggest a close association between filler and matrix.  相似文献   

17.
Cellulose acetate samples with a range of degrees of substitution (DS) were prepared by deacetylation of cellulose acetate (DS = 2.5). Chiral nematic solutions of the samples were prepared in formic acid. A handedness reversal from left to right was observed as the DS used to prepare the mesophase increased from 1.8 to 2.4. By selection of a suitably long-pitch mesophase, chiral nematic films cast from a CA (DS = 2.2)/formic acid solution showed a feint reflection of circularly polarized blue light. Deacetylation of this CA film gave a chiral nematic cellulose film with a more intense reflection band at the same wavelength. The improvement in intensity is attributed to the higher intrinsic birefringence of cellulose compared to cellulose acetate.  相似文献   

18.
Summary: Bio-based nanocomposites were manufactured by melt intercalation of nanoclays and cellulose acetate (CA) with and without plasticizer. Glycerol triacetate (triacetin) as plasticizer up to 30 mass%, and different types of organo-modified and unmodified montmorillonites (MMTs) as filler were used. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), were used to study clay dispersion, intercalation/exfoliation, and structure of the composites. XRD and TEM revealed very good dispersion and exfoliation of modified clay throughout the CA matrix. While for unmodified clay agglomeration and poor dispersion but an intercalated structure was observed. The mechanical properties of injection moulded test bars were determined by a tensile experiment giving tensile strength, Young's modulus and elongation at break. Adding plasticizer facilitated the processing and up to 20 mass%, increased the tensile strength, Young's modulus and elongation at break as well. Higher amount of plasticizer diminished the tensile properties except elongation showing a slight increase. In all plasticized composites, organo-modified clay improved the tensile strength and at the same time, young's modulus and elongation almost remained constant. On the other hand, plasticized CA compounded with unmodified clay revealed lower properties. In a particular case, compounding of unplasticized CA with unmodified clay resulted in superior mechanical properties with a novel structure. So that, in optimum percentage –5 mass%- of unmodified clay, tensile strength and young's modulus increased significantly by 335% and 100%, to 178 MPa and 8.4 GPa, respectively. This is a dramatic improvement in strength and stiffness of CA. Adding organo-modified clay resulted in a little improvement in tensile properties. SEM pictures of the optimum composite showed a core/shell structure with high orientation in the shell part. It is supposed that this behaviour is caused by the interaction between CA hydroxyl groups and free cations existing in the galleries of unmodified clay.  相似文献   

19.
This study was undertaken to evaluate both the properties of cellulose acetate films as a function of their degree of substitution (DS) and the possibility of generating reinforcements during film preparation. Sisal was selected for the entire study, among other reasons, because it is a rapidly growing source of cellulose. Cellulose acetates with various DS values were prepared in a homogeneous medium (dimethylacetamide/lithium chloride as the solvent system) and characterized. In DMAc/LiCl, cellulose and cellulose acetate films (mixed or not mixed with sisal cellulose) were successfully prepared and characterized. The films with high DS values exhibited lower hygroscopicity, a distinct morphology (scanning electron microscopy images), and lower tensile strength. In some cases, the films prepared from acetates/cellulose exhibited higher tensile strength and/or storage modulus than the acetate films. This result suggested a reinforcing action of the auto-organized cellulose chains that enabled the generation of both a film and reinforcement in a one-pot process.  相似文献   

20.
Polypropylene (PP) nanocomposites containing cellulose nanomaterials have been studied for the last decade, but are still challenging due to the lack of affinity between PP and cellulose nanofiber (CNF), and the uneven dispersion of CNF in the PP matrix. In order to achieve the uniform dispersion of CNF in the PP matrix and improve affinity between PP and CNF, plasma-treated PP/aCNF nanocomposites were prepared by adding an alkaline CNF (aCNF) suspension to the nitrogen (N2) and oxygen (O2) plasma-treated PP. Based on the results of various analyses, the N2 plasma-treated PP (npPP)/aCNF nanocomposite showed the best performance in tensile and oxygen barrier properties. The npPP/aCNF nanocomposite increased 32.8 and 26.3% in yield stress and Young's modulus, respectively, compared with neat PP, also in O2 permeability, it showed a value of 94.31 cc-mm/m2-day-atm and showed a statistically significant decrease in contrast to neat PP. The npPP/aCNF nanocomposite has a great feasibility to be applied in various barrier packaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号