首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文认为在感生电场的情况下,磁场的强弱变化可以引起磁场自身的横向运动,使得线圈中电子相对于磁场发生运动,从而等效为一个动生电场,受到洛伦兹力的作用.借助磁感线模拟磁场的运动方式,得到圆形回路中任意一点与磁场相对运动速度的表达式,进而推得该"等效动生电场"中的洛伦兹力.以螺线管为例,验证该方法可以解释感生电场所满足的规律.将感生电场与动生电场的产生原因统一为导体中电子与磁场的相对运动,相应电动势的非静电力统一为洛伦兹力.  相似文献   

2.
利用自编1D3V PIC程序,数值研究了不同外加磁场方式对次级电子倍增抑制的物理过程,给出了次级电子数目、平均能量、密度、运动轨迹、渡越时间、介质表面静电场及沉积功率等物理量时空分布关系。模拟结果表明:不同方向外加磁场抑制次级电子倍增的机理有所不同。轴向外加磁场利用电子回旋运动干扰微波电场对电子加速过程,使其碰壁能量降低以达到抑制二次电子倍增的效果;横向外加磁场利用电子回旋漂移过程中,电子半个周期被推离介质表面(不发生次级电子倍增),半个周期被推回介质表面(降低电子碰撞能量)的作用机理,达到抑制二次电子倍增的效果。讨论了横向磁场在回旋共振下,电子回旋同步加速导致回旋半径增大,电子能量持续增加的特殊过程。两种外加磁场方式都可以通过增加磁场达到进一步抑制次级电子倍增的目的。轴向外加磁场加载容易,但对磁场要求较高;横向外加磁场需要磁场较低,但加载较为困难。  相似文献   

3.
The configuration and strength of a magnetic field are calculated in the regions of electron generation, acceleration, and transport in the electron-optical system of the plasma electron source. A magnetic field necessary for discharge initiation and maintenance is generated with a permanent magnet placed in a discharge chamber. It is shown that the magnetic field strength and configuration in these regions can be considerably varied by appropriately choosing the materials of electrodes forming the magnetic circuit. It is found that the beam focusing can be significantly improved by producing a quasi-uniform magnetic field in the electron-optical system of the plasma electron source.  相似文献   

4.
A Monte Carlo simulation technique has been used to model the electron transport beharlot, especially the electron diffusion motion, in the cathode fall region of a glow discharge under the influence of a non-uniform electric field and a transverse magnetic field perpen-dicular to the cathode sheath electric field. Three types of collisions (elastic, excitation and ionization) are taken into account in our model. The electron free flying time is determined by the electron-neutral atom collision frequency. We focus attention on the electron diffusion distance and velocity. The electron-neutral atom collision processes and the electron drift velocity are also studied. The results indicate that with the increase of the magnetic field the electron diffusion distance increases and the electron diffusion velocity decreases. The results Mso show that the collision processes are enhanced by the magnetic field, this is in agreement with the experimental result. However, the axial magnetic field does not affect the electron transport behavior.  相似文献   

5.
The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the integrability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.  相似文献   

6.
唐田田  张朝民  张敏 《物理学报》2013,62(12):123201-123201
利用半经典开轨道理论, 研究了磁场和金属面附近氢负离子的剥离电子通量分布, 并揭示了电子通量分布中的振荡结构与经典轨道之间的关系.固定离子到金属面的距离, 研究了不同的磁场强度对电子通量分布的影响. 结果表明, 由于与电子通量分布相联系的剥离电子的经典轨迹增加, 随着磁场强度的增加, 通量分布变得复杂. 此外发现剥离电子的能量变化也会影响电子通量分布. 因此可以通过改变磁场强度大小和剥离电子的能量来调控剥离电子通量分布和干涉图样. 研究结果对于理解负离子在外场、表面附近的电子流通量和剥离电子干涉图样问题以及将来实验研究负离子的光剥离显微问题都可以提供一定的参考. 关键词: 开轨道理论 电子通量 金属面 磁场  相似文献   

7.
应用线性组合算符和幺正变换方法,研究磁场和耦合强度对光学极化子性质的影响。数值计算表明:当电子接近晶体表面时,光学极化子的振动频率、基态能量和第一激发能仅与磁场有关,且随磁场强度的增强而增大;当电子远离晶体表面时,基态能量和第一激发能与磁场强度和耦合参数均有关,且随磁场强度和耦合参数的增加而增加。  相似文献   

8.
The Aharonov-Bohm (AB) effect shows that electromagnetic potentials can influence an electron in a field-free region. The single-slit and double-slit electron diffraction patterns are explicitly calculated here by the Feynman path integral method for different configurations of the magnetic field in order to compare the effect of the vector potential with the effect of the magnetic field. When an electron passes through a magnetic field behind the slits, the whole diffrection pattern is shifted due to the Lorentz force. When an electron passes through two slits with magnetic flux confined to a small cylinder between them, the double-slit diffraction pattern is shifted within the single-slit diffraction envelope. The asymmetric diffraction pattern corresponds to a nonzero average displacement and momentum of the electron even though the field exerts no force on the electron. This behavior can be understood on the basis of a quantum-mechanical interference effect. The classical limit of the electron diffraction patterns is taken to obtain the classical particle distributions. The effect of the potential vanishes in the classical limit, while the effect of the magnetic field persists because of the Lorentz force.  相似文献   

9.
在圆周对称的磁场作用下,环形电子束以一定角度轰击在圆柱面的相对论返波管振荡器(RBWO)收集极上并将能量沉积其中,采用蒙特卡罗程序FLUKA,建立了电子的能量沉积分布计算模型,研究了电子能量沉积分布规律;建立了背散射电子的运动模型,模拟了磁场作用下背散射电子的运动轨迹;研究了圆周对称径向磁场的近似方法。研究结果表明:随着磁场强度的增大,最大能量沉积密度增大,背散射电子在更靠近电子束入射区域的位置再次入射并沉积能量,且可能形成一个新的能量沉积峰值。在磁场强度较大时,采用单向的径向磁场即可较好地计算圆周对称径向磁场下背散射电子的能量沉积分布。  相似文献   

10.
The dispersion of magnetoplasma excitations in two-dimensional electron systems in a strong parallel magnetic field has been studied. A considerable increase in the electron cyclotron mass with an increase in the parallel component of magnetic field has been detected. It has been found that the cyclotron mass increment is a quadratic function of the magnetic field parallel to the interface. It has been shown that the mass anisotropy of 2D electrons induced by the parallel magnetic field reaches nearly 2.5 in B = 7 T. The energy of space quantization of the electron in the quantum well has been estimated from the magnetic field dependence of the anisotropy.  相似文献   

11.
胡明  万树德  钟雷  刘昊  汪海 《物理学报》2012,61(4):45201-045201
本文利用单探针诊断等离子体参数来研究自行设计的磁控直流辉光等离子体实验装置的放电特性, 从而得出电子密度与气体压强、电子密度分布与磁场位型以及磁场强度等的关系. 另外, 用有限元的方法对线圈通电产生的磁场进行数值计算, 模拟出不同接线方式的两种磁场位型分布. 通过实验得出这两种不同的位型的磁场均对等离子体的状态有一定的“控制”作用, 而且这种“控制”作用与现有理论相符合.  相似文献   

12.
Bremsstrahlung from electron-ion collisions in a magnetic field is studied for low energies at which the Larmor radius of an electron is smaller than the characteristic impact parameter of close collisions in zero magnetic field. It is shown that the magnetic field does not qualitatively change the bremsstrahlung power at low frequencies smaller than the reciprocal time of electron transit in the vicinity of an ion in close collision in zero magnetic field. At high frequencies, the radiation intensity decreases in accordance with a power law, attains its minimal value, and then increases in accordance with a power law up to frequencies on the order of the electron cyclotron frequency. At such frequencies, the spectral power attains typical power values in zero magnetic field. At frequencies lower than the cyclotron frequency considered here, bremsstrahlung is polarized predominantly linearly in the plane formed by the magnetic field and the direction of radiation.  相似文献   

13.
Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.  相似文献   

14.
Most studies on the magnetic Aharonov–Bohm (A–B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ΔU across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the backaction analysis, we observe that the magnetic A–B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A–B effect to the vector potential violates the uncertainty principle.  相似文献   

15.
In a homogeneous magnetic field superimposed one a helically symmetric electrostatic one, the electron drift trajectory depends on the particle energy and on the particle velocity component relative to the magnetic field. These effects can be used (1) to suppress gyrotron magnetron-injection gun instabilities caused by electron reflection from the magnetic mirror and (2) for separation of electron beam energy fractions in multistage depressed collectors  相似文献   

16.
In this paper, considering the quantum effect of electrons in a super-strong magnetic field, the influence of a super-strong magnetic field on the chemical potential of a non-zero temperature electron is analyzed, the rates of β decay under the super-strong magnetic field are studied, and then we compare them with the case without a magnetic field. Here, the nucleus 63Co is investigated in detail as an example. The results show that a magnetic field that is less than 1010 T has little effect on the electron chemical potential and β decay rates, but the super-strong magnetic field that is greater than 1010 T depresses the electron chemical potential and improves the β decay rates clearly.  相似文献   

17.
In plasmas produced by microwave power the electron density displays a dependence on the magnetic field strength obviously asymmetric with respect to the harmonics of the electron cyclotron frequency. In regions of the magnetic field strength just above the harmonics there are extremely high values of electron density, the density values dropping sharply off towards the other wing of the harmonics. Absorption experiments near the second harmonic at low microwave power — the plasma being produced by different means — reveal a resonant absorption structure in the magnetic field region above the harmonic. This can be attributed to excitation of geometrical eigenmodes of electrostatic. waves propagating perpendicular to the magnetic field (Bernstein waves).  相似文献   

18.
In the present work, the influence of the magnetic field of current extracting systems on motion of electrons and envelope of the electron beam transported in preliminary created plasma in an external longitudinal magnetic field to a current-conducting target is examined. The field generated by the electron beam, the external magnetic field, and the magnetic field created by the current running down the target during electron deposition are taken into account. Configuration portraits of the beam on the target are constructed as functions of the beam current, degree of current neutralization, external field strength, and orientation of the current extractors. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 44–47, May, 2006.  相似文献   

19.
分析了直螺线管磁场缺陷的来源,考虑了电子束的空间电荷作用,采用数值方法模拟计算了磁场缺陷对电子束横向温度的影响 ,获得了电子冷却装置中直螺线管磁场的均匀性要求.结果表明,当相对磁场缺陷小于1× 1 0-3时 ,影响可以被忽略.In order to obtain the tolerance requirement for the magnetic field homogeneity of the solenoids in electron cooling device, the source of the magnetic imperfection and its influence on the transverse temperature of electron beam were investigated by means of numerical simulation, and taking the space charge effect of electron beam into account. The calculated result shows that the influence of the imperfection of magnetic field will be negligible when the relative magnetic field...  相似文献   

20.
In this study,we show how a static magnetic field can control photon-induced electron transport through a quantum dot system coupled to a photon cavity.The quantum dot system is connected to two electron reservoirs and exposed to an external perpendicular static magnetic field.The propagation of electrons through the system is thus influenced by the static magnetic and the dynamic photon fields.It is observed that the photon cavity forms photon replica states controlling electron transport in the system.If the photon field has more energy than the cyclotron energy,then the photon field is dominant in the electron transport.Consequently,the electron transport is enhanced due to activation of photon replica states.By contrast,the electron transport is suppressed in the system when the photon energy is smaller than the cyclotron energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号