首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
李庆  杨晓翔 《实验力学》2014,29(1):42-50
为了研究炭黑对橡胶材料力学性能的影响,对9种不同体积含量的炭黑填充橡胶材料进行了准静态力学实验研究。利用循环拉伸加卸载实验分析了炭黑对橡胶Mullins效应及能量损耗的影响,通过单轴拉伸实验研究了炭黑对橡胶材料刚度和起始模量的影响,采用多步松弛拉伸加卸载实验研究了炭黑对橡胶材料应力行为的应变历史相关性的影响。实验结果表明:炭黑填充量越高,橡胶材料的刚度越大,初始模量越大,Mullins效应也越明显;随着炭黑填充量的增加,橡胶在加卸载循环中所产生的迟滞损耗、Mullins效应相对能量损耗以及残余应变都呈现出非线性增长趋势;随着炭黑填充量的升高,橡胶在加卸载过程中的应力松弛现象越明显,其平衡态迟滞损耗以及与时间相关部分的迟滞损耗也越大。  相似文献   

2.
采用实验方法研究超高分子量聚乙烯(UHMWPE)材料,在不同温度、应变率和初始应变的条件下进行单轴压缩应力松弛实验,得出松弛应力与时间成非线性关系,且温度越高、应变率越大、初始应变越小,则最终稳定的应力值越小的结论.采用时间分数阶粘弹性模型,结合Boltzmann叠加原理推导出UHMWPE材料在整个加载段及松弛段的应力响应函数,并与实验数据最小二乘拟合.结果表明,时间分数阶Scott-Blair模型能很好地描述UHMWPE材料的粘弹性行为.  相似文献   

3.
采用岛津万能试验机对天然与丁苯共混橡胶(NSBR)试件进行不同温度下多步松弛循环加卸载实验和单向拉伸加卸载循环实验,对比两者的宏观力学响应,并研究温度对炭黑填充复合材料力学性能的影响.结果表明:(1)随着温度的升高,未填充橡胶逐渐变“硬”,而炭黑填充橡胶是“先变软后变硬”.(2)随着温度的升高,橡胶的迟滞损耗呈线性减小.(3)比较单向拉伸和应力松弛平衡点的应力应变曲线,填充橡胶“先变软后变硬”的温度转折点不同,这是由于应力松弛过程基本消除了粘弹性效应.  相似文献   

4.
袁梦  李钊  张光坤  李旭 《实验力学》2023,(2):196-208
对高弹态未硫化橡胶实施了不同变形模式(单轴拉伸和压缩)的循环力学实验,以考察其黏超弹性响应以及应变率对力学行为的影响。结果表明,材料的拉伸、压缩性能与加载速率和变形历史均有着显著的相关性。对于循环拉伸变形,应力-应变曲线的非线性特征较为明显,材料表现出类似于屈服的性质,且随着循环次数和变形量增加,迟滞损耗的积累趋势逐渐减弱;而对于循环压缩变形,应力-应变关系接近线弹性,且随着循环次数和变形量增加,材料刚度和迟滞损耗积累的趋势都逐渐增强。针对上述实验结果,在经典的Bergstrom-Boyce模型中引入损伤变量,对未硫化橡胶的应变率相关性和Mullins效应进行表征。理论计算结果表明,这种非线性黏超弹模型能够较好地描述未硫化橡胶在不同载荷条件下的变形响应与应力软化特征。  相似文献   

5.
通过显式、直接的方法提出一个多轴可压缩应变能函数,用来模拟类橡胶材料在加载-卸载作用下,由于Mullins效应而产生的应力-应变滞回圈.本文的创新点在于将表征能量耗散的变量引入到应变能函数.新的弹性势具有以下两个特点:第一,在加载情况下,新引入的变量不会对弹性势产生任何影响,因此,只要给出合适的形函数显式表达,3个基准实验,包括单轴拉伸和压缩,等双轴拉伸和压缩,以及平面应变,都可精确模拟;第二,新引入的变量在卸载情况下将被激活.在不同的卸载应力下,变量将发生改变,从而影响弹性势,使其最终产生不同的应力-应变关系卸载曲线,与对应的加载曲线共同构成应力-应变滞回圈.通过对Mullins效应实验数据进行分析和研究,得出了卸载形函数在不同卸载应力下变化的规律,并预测不同卸载应力下的应力-应变关系.最后,我们将得到精确匹配实验数据的数值模拟结果,从而证明本文方法不仅可以精确匹配至少3个基准实验,还可以模拟和预测类橡胶材料在加载-卸载作用下由于Mullins效应而产生的滞回圈.  相似文献   

6.
显式模拟类橡胶材料Mullins效应滞回圈   总被引:2,自引:2,他引:0  
王晓明  吴荣兴  肖衡 《力学学报》2019,51(2):484-493
通过显式、直接的方法提出一个多轴可压缩应变能函数,用来模拟类橡胶材料在加载——卸载作用下,由于Mullins效应而产生的应力——应变滞回圈. 本文的创新点在于将表征能量耗散的变量引入到应变能函数.新的弹性势具有以下两个特点:第一,在加载情况下,新引入的变量不会对弹性势产生任何影响,因此,只要给出合适的形函数显式表达,3个基准实验,包括单轴拉伸和压缩,等双轴拉伸和压缩,以及平面应变,都可精确模拟;第二,新引入的变量在卸载情况下将被激活.在不同的卸载应力下,变量将发生改变,从而影响弹性势,使其最终产生不同的应力——应变关系卸载曲线,与对应的加载曲线共同构成应力——应变滞回圈.通过对Mullins效应实验数据进行分析和研究,得出了卸载形函数在不同卸载应力下变化的规律,并预测不同卸载应力下的应力——应变关系.最后,我们将得到精确匹配实验数据的数值模拟结果,从而证明本文方法不仅可以精确匹配至少3个基准实验,还可以模拟和预测类橡胶材料在加载——卸载作用下由于Mullins效应而产生的滞回圈.   相似文献   

7.
制备了颗粒规则四方排列和六方排列的橡胶粘接颗粒材料试样,实验测试了所制备试样在单向拉伸载荷下的应力松弛曲线和不同应变率时的应力应变曲线。基于所测试的应力松弛曲线,采用曲线拟合方法得到了所测试材料的宏观Burger’s粘弹性本构模型参数。采用离散元模型中单元间连结模型代表颗粒间橡胶粘接剂的作用,并基于试样的宏观Burger’s模型参数与离散元模型中细观Burger’s连结模型参数间的关系,建立了橡胶粘接颗粒材料的无厚度胶结离散元分析模型。最后采用所建立的离散元模型计算了所测试试样的松弛和拉伸力学性能。离散元预测结果与实验结果的对比表明,采用无厚度胶结离散元模型能较好的计算颗粒规则排列的橡胶粘接颗粒材料松弛和拉伸力学性能,但基于应力松弛实验拟合而来参数不能准确反应橡胶粘接剂在高应变率条件下其力学性能的应变率相关性。  相似文献   

8.
循环软化45碳钢和循环硬化304不锈钢的棘轮行为实验研究   总被引:1,自引:1,他引:0  
对循环软化45碳钢的单轴应力循环下的平均应力、应力幅值以及先前应变循环对棘轮效应的影响进行了实验研究;并对循环硬化的304不锈钢进行了多种非比例循环加载路径下路径形状、路径等效应力幅值、平均应变与平均应力对材料棘轮变形行为的影响实验.发现平均应力和应力幅值及其历史对于材料的棘轮行为都有很大的影响.  相似文献   

9.
采用添加造孔剂的方法制备了4种不同孔隙率的未极化PZT95/5铁电陶瓷。采用基于超高速相机与数字图像相关性方法的试样全场应变测量技术以及分离式霍普金森压杆(SHPB)技术,对多孔未极化PZT95/5铁电陶瓷进行高应变率单轴压缩实验研究。全场应变测量结果显示:轴向应变仅在试样中部分布较均匀,将该区域的平均应变作为应力-应变关系中的试样应变测量值较为合理,而由SHPB原理计算的试样应变值明显偏大,需要摒弃或修正传统的SHPB数据处理方法。通过波形整形技术实现了恒应变率加载,弱化了径向惯性效应的影响,揭示出多孔未极化PZT95/5铁电陶瓷的压缩强度具有显著的应变率效应。通过分析试样轴向应变和径向应变随着加载应力的变化,阐明多孔未极化PZT95/5铁电陶瓷的非线性变形行为的物理机制是畴变和相变共同作用,并发现畴变临界应力和相变临界应力都随着应变率升高而增大。保持加载应变率不变,讨论了孔隙率对多孔未极化PZT95/5铁电陶瓷动态力学行为的影响,发现随着孔隙率的升高,动态压缩强度呈非线性衰减,而畴变临界应力和相变临界应力则基本呈线性衰减。  相似文献   

10.
谢中秋  张蓬蓬 《实验力学》2013,28(2):220-226
利用INSTRON万能试验机和分离式Hopkinson压杆(SHPB)对PMMA试件在较宽应变率范围内进行了单轴压缩实验,研究加载应变率对PMMA材料力学性能的影响.利用扫描电子显微镜对回收的试样进行了显微观察,重点分析不同加载应变率下PMMA的微观损伤破坏模式.结果表明:随着应变率的增大,PMMA的流动应力显著地增加,且冲击加载条件下,峰值应力的应变率敏感性明显高于准静态;在准静态加载条件下,PMMA试样呈现明显的延性破坏特征,在动态加载条件下则表现为脆性破坏.最后,对PMMA材料的ZWT粘弹性本构模型参数进行了拟合,拟合结果与实验结果吻合较好,表明该本构模型能够较好地描述较宽应变率范围内PMMA材料的应力应变关系.  相似文献   

11.
This paper models the cyclic stress softening of an elastomer in compression. After the initial compression the material is described as being transversely isotropic. We derive non-linear transversely isotropic constitutive equations for the elastic response, stress relaxation, residual strain, and creep of residual strain in order to model accurately the inelastic features associated with cyclic stress softening. These equations are combined with a transversely isotropic version of the Arruda–Boyce eight-chain model to develop a constitutive relation that is capable of accurately representing the Mullins effect during cyclic stress softening for a transversely isotropic, hyperelastic material, in particular a carbon-filled rubber vulcanizate. To establish the validity of the model we compare it with two test samples, one for filled vulcanized styrene–butadiene rubber and the other for filled vulcanized natural rubber. The model is found to fit this experimental data extremely well.  相似文献   

12.
为评价60Si2Mn螺旋压缩弹簧的室温松弛特性,利用InstronE3000K8953型小吨位电子动静态疲劳试验机,对其在不同温度和初始应力水平条件下进行了高温压缩加速应力松弛试验,研究了环境温度、初始应力水平对松弛行为的影响.基于粘弹性体模型,揭示了应力松弛过程中弹性应变向塑性应变的转化特性与塑性应变随松弛时间的变化规律.在对应力松弛前后弹簧丝材金相和TEM微结构进行对比分析的基础上,探讨了应力松弛的微观机制.结果表明,环境温度与初始应力水平对松弛速率具有显著影响.基于应力松弛过程的热激活特性,建立了60Si2Mn螺旋压缩弹簧的贮存寿命预测方程,并对不同应力水平下弹簧的室温和高温贮存寿命进行了合理预测.  相似文献   

13.
Abspract The stress-strain behavior of carbon black filled rubber is recognized to be nonlinearly elastic in its main part (see e.g. Gent [1]). In addition, inelastic effects occur under monotonic and cyclic processes. The inelastic behavior includes nonlinear rate dependence as well as equilibrium hysteresis. Moreover, the first periods of a stress-strain curve differ significantly from the shape of subsequent cycles; a characteristic feature, which is called the Mullins effect, because it has been pointed out by Mullins [2]. All inelastic phenomena are strongly influenced by the volume fraction of the filler particles (see e.g. Payne [3], So and Chen [4], Meinecke and Taftaf [5]).The aim of the present paper is to design a constitutive model, representing this kind of material behavior as a phenomenological theory of continuum mechanics. In order to motivate the basic structure of the constitutive theory, a series of uniaxial experiments between 100% in tension and 30% in compression are presented and analyzed. First of all, monotonic strain controlled experiments show the nonlinear rate dependence of the stress response. Then, a series of inserted relaxation periods at constant strain yields the monotonic equilibrium stress-strain curve, which is strongly nonlinear and unsymmetric with respect to the origin. Finally, cyclic experiments under strain control display pronounced hysteresis behavior. The hysteresis effects are mainly rate dependent, but there exists also a weak equilibrium hysteresis (compare to similar observations of Orschall and Peeken [6]). The Mullins effect corresponds to a softening phenomenon during the first few cycles. By means of an appropriate preprocess, this effect was excluded during the above experiments. Apart from the Mullins effect, neither hardening nor significant softening phenomena were observed in the context of cyclic loadings.These results motivate the structure of a constitutive model of finite strain viscoplasticity: The total stress is decomposed into an equilibrium stress and an overstress, where the overstress is a rate dependent functional of the strain history. The overstress represents the rate dependence of the material behavior and tends asymptotically to zero during relaxation processes. The nonlinearity of the rate dependence is incorporated by means of a stress dependent relaxation time. The equilibrium stress is assumed to be a rate independent functional of the strain history. For this quantity, we make use of an arclength representation, which was originally introduced by Valanis [7]. In case of vanishing equilibrium hysteresis and vanishing rate dependence our constitutive model reduces to finite strain hyperelasticity, which is the first approximation of the constitutive properties. In more general cases the main shape of a stress-strain curve is determined by hyperelasticity, superimposed by rate dependent and equilibrium hysteresis. The representation of the Mullins effect is incorporated by a continuum damage model.Some numerical simulations at the end of the paper demonstrate that the presented theory is able to represent the observed phenomena qualitatively and quantitatively with sufficient approximation.  相似文献   

14.
The stress response of amorphous polymers exhibits tremendous change during the glass transition region, from soft viscoelastic response to stiff viscoplastic response. In order to describe the temperature-dependent and rate-dependent stress response of amorphous polymers, we extend the one-dimensional small strain fractional Zener model to the three-dimensional finite deformation model. The Eyring model is adopted to represent the stress-activated viscous flow. A phenomenological evolution equation of yield strength is used to describe the strain softening behaviors. We demonstrate that the stress response predicted by the three-dimensional model is consistent with that of one-dimensional model under uniaxial deformation, which confirms the validity of the extension. The model is then applied to describe the stress response of an amorphous thermoset at various temperatures and strain rates, which shows good agreement between experiments and simulation. We further perform a parameter study to investigate the influence of the model parameters on the stress response. The results show that a smaller fractional order results in a larger yield strain while has little effect on the yield stress when the temperature is below the glass transition temperature. For the stress relaxation tests, a smaller fractional order leads to a slower relaxation rate.  相似文献   

15.
An experimental study and a method for simulating the constitutive response of elastomers at temperatures in the chemorheological range (90-150 °C for natural rubber) are presented. A comprehensive set of uniaxial experiments for a variety of prescribed temperature histories is performed on natural rubber specimens that exhibit finite elasticity, entropic stiffening with temperature, viscoelasticity, scission, and oxygen diffusion/reaction effects. The simulation approach is based on a multi-network framework for finite elasticity, isothermal incompressibility, thermal expansion, and temperature-induced degradation. The model extends previous work to account for kinetics of scission for arbitrary time-varying temperature histories and incorporates the effects of viscoelastic relaxation and diffusion-limited oxidative scission. The model is calibrated to experiments performed on a commercially-available filled natural rubber material, and numerical simulations are compared favorably to experiments for a variety of temperature histories.  相似文献   

16.
Load relaxation tests deliver several orders of magnitude of inelastic strain rate data while elastic strains are converted into inelastic strains [see Lemaitre and Chaboche, 1994. (Mechanics of Solid Materials, Oxford University Press, Cambridge p. 264)]. Hart used this test for providing information on the inelastic deformation behavior for modeling purposes. Characteristic relaxation curves were obtained with ductile metals and alloys at room and high temperature showing a scaling relation derived from Hart's theory. Subsequent testing with servo-controlled testing machines and strain measurement on the gage length showed that an increase of prior strain rate also increased the average relaxation rate. For relaxation tests starting in the flow stress region, the relaxation curves can be independent of the stress and strain at the start of the relaxation tests. For the modeling of these newly found relaxation behaviors and other phenomena the viscoplasticity theory based on overstress (VBO) has been introduced. It is shown that VBO admits a long-term (asymptotic) solution that can be used with sufficient accuracy for the flow stress region of the stress–strain diagram. The long-term solution predicts the observed relaxation behaviors and that the relaxation curves coincide when shifted along the stress axis. This behavior is observed for the recently obtained data and is confirmed by two sets of the Hart-type data when they are plotted according to the new method.  相似文献   

17.
The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is investigated in compression and shear regimes. In order to describe the viscosity-induced rate-dependent effects, a constitutive model of finite strain viscoelasticity founded on the basis of the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts is proposed. The total stress is decomposed into an equilibrium stress and a viscosity-induced overstress by following the concept of the Zener model. To identify the constitutive equation for the viscosity from direct experimental observations, an analytical scheme that ascertains the fundamental relation between the inelastic strain rate and the overstress tensor of the Mandel type by evaluating simple relaxation test results is proposed. Evaluation of the experimental results using the proposed analytical scheme confirms the necessity of considering both the current overstress and the current deformation as variables to describe the evolution of the rate-dependent phenomena. Based on this experimentally based motivation, an evolution equation using power laws is proposed to represent the effects of internal variables on viscosity phenomena. The proposed evolution equation has been incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way. Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests at different strain rates using the developed model show an encouraging correlation with the experiments conducted on HDR and NR in both compression and shear regimes. Finally, an approach to extend the proposed evolution equation for rate-dependent cyclic processes is proposed. The simulation results are critically compared with the experiments.  相似文献   

18.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号