首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capillary broadening of a 2-phase interface is investigated both experimentally and theoretically. When a binary mixture in a thin film with thickness D segregates into two coexisting phases the interface between the two phases may form parallel to the substrate due to preferential surface attraction of one of the components. We show that the interfacial profile (of intrinsic width w0) is broadened due to capillary waves, which lead to fluctuations, of correlation length of the local interface positions in the directions parallel to the confining walls. We postulate that acts as an upper cutoff for the spectrum of capillary waves on the interface, so that the effective mean square interfacial width w varies as . In the limit of large D this yields or respectively for the case of short- or long-range forces between walls and the interface. We used the Nuclear Reaction Analysis depth profiling technique, to investigate this broadening effect directly in two binary polymer mixtures. Our results reveal that the interfacial width indeed increases with film thickness D, though the observed interfacial width is lower than the predicted w. This is probably due to surface tension effects imposed by the confining surfaces which are not taken into account in our model. Received: 19 February 1998 / Received in final form: 2 September 1998 / Accepted: 8 September 1998  相似文献   

2.
The spectrum of magnetoelastic waves propagating along the magnetic field in an in-plane magnetized ferromagnetic plate is numerically investigated in the exchangeless approximation. No restrictions are imposed either on the field pattern of backward volume magnetostatic waves (BVMSWs) or elastic waves supported by a plate of a given geometry across the plate or on the relationship between the sound velocity v S and the phase velocity of the magnetoelastic waves v=ω/q (ω is the frequency, q is the wave number). The resonance interaction of the BVMSWs and elastic waves is accompanied, as a rule, by the formation of “stop” bands δω that are proportional to the magnetoelastic coupling constant b. When the BVMSWs are in resonance with Lamb and shear elastic modes the values of the magnetoelastic gaps δω at vv S turn out to be of the same order. For vv S , the efficiency of the interaction between the BVMSWs and transverse Lamb modes is almost one order of magnitude higher. If the frequency spacing Δω between the elastic modes is smaller than the mag-netoelastic gap in the spectrum (Δω≤δω), which takes place, particularly, in the region of crowding the elastic mode spectrum (vv S), the resonant interaction results in mixing the dispersion laws for the elastic modes. Namely, a surface mode may transform into a volume one and a shear mode, into the Lamb mode or into a shear mode with another number. The resonance interaction of the shear and Lamb elastic modes not only forms the magnetoelastic gaps δω∼b 2 but also changes the efficiency of elastic wave coupling with the magnetic subsystem. This may show up as the coexistence of the effects of “repulsing” both the dispersion laws and the damping decrements of the elastic waves at the resonance frequency. It is shown that magnetostriction splits the cutoff frequencies of both transverse Lamb modes and shear modes, as well as the long-wave (q → 0) frequency limits f 0 of the BVMSW modes. This may cause the resonance interaction between BVMSW modes of equal evenness in a narrow frequency band Δ∼b near f 0.  相似文献   

3.
An external electric field changes the dispersion law of waves on the surface of a liquid. Besides the usual capillary term (∝k 3, k is the wave number) and gravitational term (∝k), a term quadratic in the wave vector appears in the expression for the square of the frequency in a homogeneous field. These excitations are associated with the variation of the coefficient of surface tension of the liquid at low temperatures. In the case of a large field tangent to the surface, the correction is proportional to T 8/3, unlike the T 7/3 correction in the absence of a field. Zh. éksp. Teor. Fiz. 111, 1369–1372 (April 1997)  相似文献   

4.
A complete macroscopic theory for compressible nematic-viscous fluid interfaces is developed and used to characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the interfacial stress tensor includes elastic and viscous components. Surface gradients of the interfacial elastic stress tensor generates tangential Marangoni forces as well as normal forces. The latter may be present even in planar surfaces, implying that in principle static planar interfaces may accommodate pressure jumps. The asymmetric interfacial viscous stress tensor takes into account the surface nematic ordering and is given in terms of the interfacial rate of deformation and interfacial Jaumann derivative. The material function that describes the anisotropic viscoelasticity is the dynamic interfacial tension, which includes the interfacial tension and dilational viscosities. Viscous dissipation due to interfacial compressibility is described by the anisotropic dilational viscosity, and it is shown to describe the Boussinesq surface fluid appropriate for Newtonian interfaces when the director is homeotropic. Three characteristic interfacial shear viscosities are defined according to whether the surface orientation is along the velocity direction, the velocity gradient, or the unit normal. In the last case the expression reduces to the interfacial shear viscosity of the Boussinesq surface fluid. The theory provides a theoretical framework to study interfacial stability, thin liquid film stability and hydrodynamics, and any other interfacial rheology phenomena.  相似文献   

5.
周璇  张志东  叶文江  宣丽 《中国物理 B》2012,21(6):66104-066104
Zhang Y J et al.[Zhang Y J,Zhang Z D,Zhu L Z and Xuan L 2011 Liquid Cryst.38 355] investigated the effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface,in which polar anchoring was isotropic in the local tangent plane of the surface.In this paper,we investigate the effects of both isotropic and anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.’s theory.The results show that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces.In the one-elastic-constant approximation(K11 = K22 = K33 = K),the surface-groove-induced azimuthal anchoring energy is entirely consistent with the result of Faetti,and it reduces to the original result of Berreman with an increase in polar anchoring.Moreover,the contribution of the surface-like elastic term to the Rapini-Papoular anchoring energy is zero.  相似文献   

6.
In this paper we study the effect of the anisotropic stress generated by neutrinos on the propagation of primordial cosmological gravitational waves. The presence of anisotropic stress, like the one generated by free-streaming neutrinos, partially absorbs the gravitational waves (GWs) propagating across the Universe. We find that in the standard case of three neutrino families, 22% of the intensity of the wave is absorbed, in fair agreement with previous studies. We have also calculated the maximum possible amount of damping, corresponding to the case of a flat Universe completely dominated by ultrarelativistic collisionless particles. In this case 43% of the intensity of the wave is absorbed. Finally, we have taken into account the effect of collisions, using a simple form for the collision term parameterized by the mean time between interactions, that allows to go smoothly from the case of a tightly coupled fluid to that of a collisionless gas. The dependence of the absorption on the neutrino energy density and on the effectiveness of the interactions opens the interesting possibility of observing spectral features related to particular events in the thermal history of the Universe, like neutrino decoupling and electron–positron annihilation, both occurring at T ~ 1  MeV. GWS entering the horizon at that time will have today a frequency ν ~ 10−9 Hz, a region that is going to be probed by Pulsar Timing Arrays.  相似文献   

7.
刘三秋  陈小昌 《中国物理 B》2011,20(6):65201-065201
The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.  相似文献   

8.
Using atomic force microscopy on silica and float glass surfaces, we give evidence that the roughness of melted glass surfaces can be quantitatively accounted for by frozen capillary waves. In this framework the height spatial correlations are shown to obey a logarithmic scaling law; the identification of this behaviour allows to estimate the ratio kTF/πγ where k is the Boltzmann constant, γ the interface tension and TF the temperature corresponding to the “freezing” of the capillary waves. Variations of interface tension and (to a lesser extent) temperatures of annealing treatments are shown to be directly measurable from a statistical analysis of the roughness spectrum of the glass surfaces.  相似文献   

9.
10.
Full-scale measurements indicate that the frequencies of ice bending oscillations fall mostly into the range of 1–5 Hz. However, rarely bending oscillations may take place at about 13 Hz. Such oscillations are viewed as an intermediate between the ice bending oscillations and capillary wave oscillations on water. It is found theoretically that frequency f of the ice bending oscillations and interfacial tension coefficient α at the water-ice interface obey the relationship f ~ α?1/4. The proportionality factor omitted here depends on the physical properties of water and ice. Putting f = 13 Hz, we, substituting the respective known quantities into this relationship, find that interfacial tension coefficient α equals α = 3.3 N/m. Thus, the interfacial tension coefficient at the water-ice interface can be estimated in this way.  相似文献   

11.
Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables q i do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter β ±nc and the field φ, for some value in the λ eff cosmological term and noncommutative θ parameter, present a dynamical isotropization up to a critical cosmic time t c ; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.  相似文献   

12.
We derive scaling laws for the steady spectrum of wind excited waves, neglecting surface tension and taking air and water as inviscid, an approximation valid at large wind speed. Independently of the wind speed, there exists an unique (small) dimensionless parameter ϵ, the ratio of the mass densities of the two fluids (air and water). The smallness of ϵ allows to derive some important average properties of the wave system. The average square slope of the waves is, as observed, a small but not very small quantity, because it is of order |ln(ϵ 2)|-1. This supports the often used assumption of small nonlinearity in the wave-wave interaction. We introduce an equation to be satisfied by the two-point correlation of the height fluctuations. Lastly we reconsider the formation of swell, that is the relationship between the randomness of waves and the observation of quasi monochromatic water waves.  相似文献   

13.
We propose a q-deformation of the su(2)-invariant Schrödinger equation of a spinless particle in a central potential, which allows us not only to determine a deformed spectrum and the corresponding eigenstates, as in other approaches, but also to calculate the expectation values of some physically-relevant operators. Here we consider the case of the isotropic harmonic oscillator and of the quadrupole operator governing its interaction with an external field. We obtain the spectrum and wave functions both for q R+ and generic q S 1, and study the effects of the q-value range and of the arbitrariness in the su q (2) Casimir operator choice. We then show that the quadrupole operator in l = 0 states provides a good measure of the deformation influence on the wave functions and on the Hilbert space spanned by them.  相似文献   

14.
We study theoretically the behavior of nanoscopic liquid films L (thickness e) intercalated between a solid S and a rubber R (elastic modulus μ). Thickness modulations involve a healing length , which results from a competition between elastic and disjoining pressure. With van der Waals interactions, , where a is a molecular size and h0 the rubber capillary length ( , interfacial tension). If the Hamaker constant of the intercalated liquid is negative, the film dewets by amplification of peristaltic fluctuations (“spinodal dewetting”). The typical size of the contacts is predicted to scale like for films of thicknesses . The rise time of the fastest mode, predicted to scale like , should be very sensitive to the film thickness. Received 11 February 2000 and Received in final form 22 May 2000  相似文献   

15.
A nematic liquid crystal slab composed of N molecular layers is investigated using a simple cubic lattice model, based upon the molecular pair potential which is spatially anisotropic and dependent on elastic constants of liquid crystals. A perfect nematic order is assumed in the theoretical treatment, which means the orientation of the molecular long axis coincides with the director of liquid crystal and the total free energy equals to the total interaction energy. We present a modified Gruhn-Hess model, which is relative to the splay-bend elastic constant K13. Furthermore, we have studied the free nematic interfacial behavior (intrinsic anchoring) by this model in the assumption of the perfect nematic order. We find that the preferred orientation at the free interface and the intrinsic anchoring strength change with the value of modification, and that the director profile can be determined by the competition of the intrinsic anchoring with external forces present in the system. Also we simulate the intrinsic anchoring at different temperatures using Monte Carlo method and the simulation results show that the intrinsic anchoring favors planar alignment and the free interface is more disordered than the bulk.  相似文献   

16.
The propagation of surface acoustic waves at microwave frequencies (1010 Hz) was studied on proton exchanged LiNbO3 crystals by means of Brillouin scattering. The proton exchange causes a large velocity reduction for surface acoustic waves propagating in the x–y plane of ay-cut crystal as well as for longitudinal bulk acoustic waves travelling in the proton exchanged sub-surface region. The velocity reduction amounts to about 20% for both types of waves. The corresponding elastic constants are reduced even by about 40% since the density remains almost constant. This softening seems to involve both the shear and compressional elastic constants, but in an anisotropic way.Thus by proton exchange it is possible to build acoustic waveguides adjacent to the surface, similar to the construction of optical waveguides. By a lateral control of the proton exchange rate optical elements for ultrasonic waves, for example, acoustic lenses can be produced without deformation of the flat surface.The absorption of surface acoustic waves on proton exchanged surfaces is stronger than on pure LiNbO3 indicating a novel absorption mechanism becoming active in the proton exchanged material.  相似文献   

17.
Experiments on dewetting thin polymer films confirm the theoretical prediction that thermal noise can strongly influence characteristic time scales of fluid flow and cause coarsening of typical length scales. Comparing the experiments with deterministic simulations, we show that the Navier-Stokes equation has to be extended by a conserved bulk noise term to accomplish the observed spectrum of capillary waves. Because of thermal fluctuations the spectrum changes from an exponential to a power law decay for large wave vectors. Also the time evolution of the typical wave vector of unstable perturbations exhibits noise-induced coarsening that is absent in deterministic hydrodynamic flow.  相似文献   

18.
Small‐angle scattering (SAS) studies are reviewed of adsorption and capillary condensation of water, hydrocarbons and halogenated hydrocarbons near room temperature, and of nitrogen at 78 K in some mesoporous solids, mainly silicas. The theory needed for the interpretation of SAS data is briefly covered. Calculations of the scattered intensity I(q) for a model porous medium show that I(q) depends markedly on the film thickness t. Adsorption and capillary condensation of nitrogen at 78 K in mesoporous silicas was studied by use of in situ SANS, and t as function of the relative pressure P/Ps was estimated. Adsorption of N2 in defects within the silica skeleton at P/Ps<0.1 lead to a significant increase in I(q). Isolated vapor bubbles in capillary condensed nitrogen in a Gelsil® appeared on adsorption near saturation of the pore system. The kinetics of capillary condensation and of drainage were followed. Power law scattering at low q indicated the formation of ramified clusters of voids on drainage of liquid nitrogen from the xerogel Gelsil®. Similar clusters were observed on drainage of water from Vycor® glass. Provided the clusters indicate a percolation process, the desorption branch should not be used for the estimation of a pore size distribution for materials with networked pores. The adsorptive smoothing by benzene was observed of a rough interface in a controlled pore glass.  相似文献   

19.
李晓薇  董正超 《物理学报》2001,50(7):1366-1370
考虑界面粗糙散射,在Blonder-Tinkham-Klapwijk(BTK)理论框架下,通过求解Bogoliubov-de-Gennes(BdG)方程,分别计算T=0K和有限温度下,d(x2-y2)+idxy混合波正常金属绝缘层超导体结中的准粒子输运系数和隧道谱.研究表明:隧道谱中的电导峰的劈裂程度强烈地依赖于dxy波分量的强度、超导体的晶轴方位和界面粗糙强度,而温度的升高能压低电导峰. 关键词: NIS结 (x2-y2)+idxy混合波超导体')" href="#">d(x2-y2)+idxy混合波超导体 隧道谱  相似文献   

20.
Abstract

Diagrammatic perturbation theory and computer simulation methods are used to compute the angular intensity correlation function C(q, k|q′,k′)=([I(q|k) - (I(q|k))] × [I(q′|k′) - (I(q′|k′))]) for p-polarized light scattered from a weakly rough, one-dimensional random metal surface. I(q|k) is the squared modulus of the scattering matrix for the system, and q, q′ and k, k′ are the projections on the mean scattering surface of the wavevectors of the scattered and incident light, respectively. Contributions to C include: (a) short-range memory effect and time-reversed memory effect terms, C (1); (b) an additional short-range term of comparable magnitude C (10); (c) a long-range term C (2); (d) an infinite-range term C (3); and (e) a term C (1.5) that along with C (2) displays peaks associated with the excitation of surface plasmon polaritons. The diagrammatic methods are also extended to treat the angular intensity correlation function for the scattering of p to p, p to s, s to p, and s to s polarizations of light from a two-dimensional randomly rough surface. These correlations are again described in terms of C (1), C (10), C (1.5), C (2), and C (3) contributions to C for the two-dimensional surfaces. Short-range memory and time-reversed memory effects are observed in the two-dimensional C (1) correlations, and peaks associated with the excitation of surface polaritons are observed in the two-dimensional C (1.5) and C (2) correlations. Most of the results for the one- and two-dimensional systems are presented for incident electromagnetic plane waves. In addition, results for one-dimensional systems are presented for incident electromagnetic beams of finite width. Some of the results for one-dimensional surfaces are corroborated by means of computer simulation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号