首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetoelastic waves in an in-plane magnetized ferromagnetic plate
Authors:Yu A Filimonov  Yu V Khivintsev
Institution:(1) Institute of Radio Engineering and Electronics, Saratov Branch, Russian Academy of Sciences, Saratov, 410019, Russia
Abstract:The spectrum of magnetoelastic waves propagating along the magnetic field in an in-plane magnetized ferromagnetic plate is numerically investigated in the exchangeless approximation. No restrictions are imposed either on the field pattern of backward volume magnetostatic waves (BVMSWs) or elastic waves supported by a plate of a given geometry across the plate or on the relationship between the sound velocity v S and the phase velocity of the magnetoelastic waves v=ω/q (ω is the frequency, q is the wave number). The resonance interaction of the BVMSWs and elastic waves is accompanied, as a rule, by the formation of “stop” bands δω that are proportional to the magnetoelastic coupling constant b. When the BVMSWs are in resonance with Lamb and shear elastic modes the values of the magnetoelastic gaps δω at vv S turn out to be of the same order. For v?v S , the efficiency of the interaction between the BVMSWs and transverse Lamb modes is almost one order of magnitude higher. If the frequency spacing Δω between the elastic modes is smaller than the mag-netoelastic gap in the spectrum (Δω≤δω), which takes place, particularly, in the region of crowding the elastic mode spectrum (vv S), the resonant interaction results in mixing the dispersion laws for the elastic modes. Namely, a surface mode may transform into a volume one and a shear mode, into the Lamb mode or into a shear mode with another number. The resonance interaction of the shear and Lamb elastic modes not only forms the magnetoelastic gaps δω~b 2 but also changes the efficiency of elastic wave coupling with the magnetic subsystem. This may show up as the coexistence of the effects of “repulsing” both the dispersion laws and the damping decrements of the elastic waves at the resonance frequency. It is shown that magnetostriction splits the cutoff frequencies of both transverse Lamb modes and shear modes, as well as the long-wave (q → 0) frequency limits f 0 of the BVMSW modes. This may cause the resonance interaction between BVMSW modes of equal evenness in a narrow frequency band Δ~b near f 0.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号