首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binder  K.  Müller  M.  Schmid  F.  Werner  A. 《Journal of statistical physics》1999,95(5-6):1045-1068
A symmetric binary mixture (A, B) below its critical temperature T c of unmixing is considered in a thin-film geometry confined between two parallel walls, where it is assumed that one wall prefers A and the other wall prefers B. Then an interface between the coexisting unmixed phases is stabilized, which (above the wetting transition temperature) occurs in the center of the film for an average concentration of c=1/2. We consider how the concentration profile c(z) across the thin film depends on the film thickness D. By Monte Carlo simulation of a lattice model for a polymer mixture it is shown that for relatively small D the width of the interface scales like w D, while for larger D a crossover to a behavior w occurs. This behavior is explained by phenomenological theories: it is shown that the behavior at small D can be understood by a suitable extension of the Cahn—Hilliard gradient-square-type theory, while the behavior for large D can be traced back to the behavior of capillary waves exposed to a short-range potential by the walls. Corrections due to fast concentration variations, as they occur in the strong-segregation limit of a polymer mixture, can be accounted for by self-consistent field theory. Subtle problems occur, however, with respect to the proper combination of these theories with the capillary wave approximation, particularly at intermediate values of D.  相似文献   

2.
Measurements are presented of the X-ray specular reflectivity and near-specular diffuse scattering of the interface in a near-critical mixture of hexane and perfluorohexane. A lineshape analysis of the scattered intensity at each temperature yields values for the interfacial tension and interfacial width. The temperature variation of the tension and width so-obtained are consistent with current understanding of this interface, which holds that there is, firstly, an intrinsic width over which the fluid density varies smoothly from one coexistence composition to the other, and, secondly, that the interface acquires an additional and larger statistical interfacial width as a result of capillary fluctuations. Received 1 April 1998  相似文献   

3.
We report here experiments on two-dimensional funnel flow of diameter glass beads on an inclined plane. We have investigated the properties of the flow according to the outlet size D of the funnel and the gravity. We have identified three different regimes. For small funnel outlet sizes, there is no significant change in flow density: the flow is rather steady and homogeneous. For intermediate outlet sizes (), the flow is intermittent, consisting of spatially ordered density waves propagating upwards. At bigger outlet sizes, density waves do not exhibit any ordering and the flow dynamics becomes chaotic. In addition, we find that the flow dynamics is independent of the funnel opening angle except close to the channel flow configuration. Finally, it is stressed that the interactions between the beads and the inclined plane play a crucial role in the mechanism of formation of density waves. Received: 9 July 1998 / Received in final form and Accepted: 18 September 1998  相似文献   

4.
The Martin-Siggia-Rose functional technique and the selfconsistent Hartree approximation is applied to the dynamics of a D-dimensional manifold in a melt of similar manifolds. The generalized Rouse equation is derived and its static and dynamic properties are studied. The static upper critical dimension, d uc =2D/(2-D), discriminates between Gaussian (or screened) and non-Gaussian regimes, whereas its dynamical counterpart, , discriminates between Rouse- and renormalized-Rouse behavior. The Rouse modes correlation function in a stretched exponential form and the dynamical exponents are calculated explicitly. The special case of linear chains D=1 shows agreement with Monte-Carlo simulations. Received: 22 May 1998 / Received in final form: 31 August 1998 / Accepted: 8 September 1998  相似文献   

5.
Free energy of semiflexible polymers and structure of interfaces   总被引:1,自引:0,他引:1  
The free energy of semiflexible polymers is calculated as a functional of the compositional scalar order parameter and the orientational order parameter of second-rank tensor Sij on the basis of a microscopic model of wormlike chains with variable segment lengths. We use a density functional theory and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series of .The interaction term of the free energy is derived with a random phase approximation. For the rigid rod limit, the nematic-isotropic transition point is given by , N and w being the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region. Received: 28 May 1998 / Revised: 12 August 1998 / Accepted: 8 September 1998  相似文献   

6.
7.
We study irreversible A-B reaction kinetics at a fixed interface separating two immiscible bulk phases, A and B. Coupled equations are derived for the hierarchy of many-body correlation functions. Postulating physically motivated bounds, closed equations result without the need for ad hoc decoupling approximations. We consider general dynamical exponent z, where is the rms diffusion distance after time t. At short times the number of reactions per unit area, , is 2nd order in the far-field reactant densities . For spatial dimensions dabove a critical value , simple mean field (MF) kinetics pertain, where Qb is the local reactivity. For low dimensions , this MF regime is followed by 2nd order diffusion controlled (DC) kinetics, , provided . Logarithmic corrections arise in marginal cases. At long times, a cross-over to 1st order DC kinetics occurs: . A density depletion hole grows on the more dilute A side. In the symmetric case (), when the long time decay of the interfacial reactant density, , is determined by fluctuations in the initial reactant distribution, giving . Correspondingly, A-rich and B-rich regions develop at the interface analogously to the segregation effects established by other authors for the bulk reaction . For fluctuations are unimportant: local mean field theory applies at the interface (joint density distribution approximating the product of A and B densities) and . We apply our results to simple molecules (Fickian diffusion, z=2) and to several models of short-time polymer diffusion (z>2). Received 8 June 1998 and Received in final form 10 September 1999  相似文献   

8.
We study theoretically the behavior of nanoscopic liquid films L (thickness e) intercalated between a solid S and a rubber R (elastic modulus μ). Thickness modulations involve a healing length , which results from a competition between elastic and disjoining pressure. With van der Waals interactions, , where a is a molecular size and h0 the rubber capillary length ( , interfacial tension). If the Hamaker constant of the intercalated liquid is negative, the film dewets by amplification of peristaltic fluctuations (“spinodal dewetting”). The typical size of the contacts is predicted to scale like for films of thicknesses . The rise time of the fastest mode, predicted to scale like , should be very sensitive to the film thickness. Received 11 February 2000 and Received in final form 22 May 2000  相似文献   

9.
We present a two-dimensional model to account for the role of heat-conducting walls in the measurement of heat transport and Soret-effect-driven mass transport in transient holographic grating experiments. Heat diffusion into the walls leads to non-exponential decay of the temperature grating. Under certain experimental conditions it can be approximated by an exponential function and assigned an apparent thermal diffusivity Dth, app < Dth, s, where Dth,s is the true thermal diffusivity of the sample. The ratio Dth, app/Dth, s depends on only three dimensionless parameters, d /ls, κsw, and Dth, s/Dth, w. d is the grating period, ls the sample thickness, κs and κw the thermal conductivities of sample and wall, respectively, and Dth,w the thermal diffusivity of the wall. If at least two measurements are performed at different d /ls, both Dth,s and κs can be determined. Instead of costly solving PDEs, Dth,s can be obtained by finding the zero of an analytic function. For thin samples and large grating periods, heat conduction into the walls plays a predominant role and the concentration grating in binary mixtures is no longer one-dimensional. Nevertheless, the normalized heterodyne diffraction efficiency of the concentration grating remains unaffected and the true thermal and collective diffusion coefficient and the correct Soret coefficient are still obtained from a simple one-dimensional model.  相似文献   

10.
We have carried out a systematic study of buckling-like mechanical instabilities in simple two- (2D) and three-dimensional (3D) symmetric foam clusters sandwiched between parallel planar walls. These instabilities occur when the wall separation w is reduced below a critical value, w*, for which the foam surface energy E reaches its minimum, E*. The clusters under investigation consist of either a single bubble, or of twin bubbles of fixed equal sizes (areas A in 2D or volumes V in 3D), which are either free to slide or pinned at the confining walls. We have numerically obtained w* for both free and pinned 2D and 3D clusters. Furthermore, we have calculated the buckled configurations of 2D twin bubbles, either free or pinned, and of 3D free twin bubbles, whose energy is independent of w and equal to the minimum energy E* of the unbuckled state. Finally, we have also predicted the critical wt* at which the terminal configurations under extension of 2D and 3D single and twin bubbles are realised. Experimental illustrations of these transitions under compression and extension are presented. Our results, together with others from the literature, suggest that a bubble cluster bounded by two parallel walls is stable only if the normal force it exerts on the walls is attractive, i.e., if dE/dw > 0; clusters that cause repulsion between the walls are unstable. We correlate this with the distribution of film orientations: films in a stable cluster cannot be too parallel to the confining walls; rather, their average tilt must be larger than for a random distribution of film orientations.  相似文献   

11.
12.
We present a systematic study of capillary filling for a binary fluid by using mesoscopic a lattice Boltzmann model describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at changing the ratio the typical size of the capillary, H, and the wettability of walls. Numerical results yield quantitative agreement with the theoretical Washburn law, provided that the channel height is sufficiently larger than the interface width and variations of the dynamic contact angle with the capillary number are taken into account.  相似文献   

13.
Nanocrystalline Au and Ag in multilayer thin film form with Au/Ag/Au structure were prepared by high pressure (∼40 Pa) d.c. sputtering techniques. The Ag concentrations in AgxAu1-x films were changed from x = 0 to 1. These multilayer films with varying Ag concentration showed significant changes in microstructures obtained from TEM and XRD analyses. The optical absorption spectra of these multilayer films showed a single plasmon band confirming the formation of Au-Ag alloy. We ascribe this alloying to the interfacial reactions in nanophase limited at the Au-Ag interface. The red-shift and broadening of the plasmon bands with the increase in silver concentration could be associated to the increase in size of the nanoparticles and its distribution. The observed red shift in the plasmon band may be associated with the change in electronic structure at the Au-Ag interface due to configuration mixing of the atomic energy levels of Au and Ag. Received 17 October 2002 / Received in final form 26 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: msakp@mahendra.iacs.res.in  相似文献   

14.
The effect of the ratio of block lengths on the interfacial partitioning of poly(styrene-block-1,4 isoprene) diblock copolymers from their mixtures with polystyrene homopolymer melt is investigated utilizing a series of copolymers with almost constant molecular weight but different compositions. The concentration profile of the copolymer is measured directly using the nuclear reaction analysis technique; a segregation of the diblock is found at both the air/polymer surface, due to the lower surface energy of polyisoprene, and at the substrate/polymer interface. No significant effect of the block length ratio on the free-surface excess was observed. The block molecular weights have apparently led to dangling chain conformations in the non-overlapping mushroom and in the overlapping mushroom regimes whereas the brush regime was not accessible; no indications of a real border between the two former regimes was found. Received: 20 July 1998 / Received in final form and Accepted: 11 September 1998  相似文献   

15.
The dynamical scaling properties of selfavoiding polymerized membranes with internal dimension D are studied using model A dynamics. It is shown that the theory is renormalizable to all orders in perturbation theory and that the dynamical scaling exponent z is given by . This result applies especially to membranes (D=2) but also to polymers (D=1). Received: 5 September 1997 / Accepted: 17 November 1997  相似文献   

16.
Intermittent and irregular motion of isolated twin boundary (kink) in organic crystal (TMTSF)2PF6 was studied at room temperature. Both the local velocity and the time of intermission are determined not only by external stress and temperature but also by the time (t w) elapsed after the backward passage and before the following forward one. When the kink moves after longer t w, its velocity becomes smaller and the time of intermission longer. Both tend to saturate for t w longer than 102 s. This result indicates that some disorder is induced in the lattice by the backward motion and it is relaxed during t w. We also found that the effect of the backward motion of one kink on its following motion is equivalent quantitatively to that of the forward motion of the pair-created counterpart. Received: 14 April 1998 / Received in final form and Accepted: 1st September 1998  相似文献   

17.
We study the shape of gas-liquid interfaces forming inside rectangular nanogrooves (i.e., slit-pores capped on one end). On account of purely repulsive fluid-substrate interactions the confining walls are dry (i.e., wet by vapor) and a liquid-vapor interface intrudes into the nanogrooves to a distance determined by the pressure (i.e., chemical potential). By means of Monte Carlo simulations in the grand-canonical ensemble (GCEMC) we obtain the density ρ(z) along the midline (x = 0 of the nanogroove for various geometries (i.e., depths D and widths L of the nanogroove. We analyze the density profiles with the aid of an analytic expression which we obtain through a transfer-matrix treatment of a one-dimensional effective interface Hamiltonian. Besides geometrical parameters such as D and L , the resulting analytic expression depends on temperature T , densities of coexisting gas and liquid phases in the bulk ρg,l x and the interfacial tension γ . The latter three quantities are determined in independent molecular dynamics simulations of planar gas-liquid interfaces. Our results indicate that the analytic formula provides an excellent representation of ρ(z) as long as L is sufficiently small. At larger L the meniscus of the intruding liquid flattens. Under these conditions the transfer-matrix analysis is no longer adequate and the agreement between GCEMC data and the analytic treatment is less satisfactory.  相似文献   

18.
A possible new high temperature superconducting phase was recently reported in WO 3 :Na. We have examined the reaction between sodium vapour and WO 3 , and compared the phases formed by the reaction to previously known WO 3 phases. By using light microscopy and electron microprobe analysis, domain walls from the interior of the crystal are shown to have a much higher Na content than bulk material after reaction with Na vapour. This indicates preferential transport along the domain walls. The result is very similar to a reduction reaction of WO 3 crystals in which twin walls lose oxygen preferentially. Oxygen deficient twin walls are superconducting with . Received 3 September 1999 and Received in final form 15 December 1999  相似文献   

19.
We investigate the competition between magnetic order and local Kondo effect in a Kondo lattice model (i.e. the Coqblin-Schrieffer Hamiltonian extended to a lattice) in a mean-field approximation, taking account of the spin-orbit degeneracy of each localized f level. This leads to the definition of a dependent Kondo temperature. We study the Kondo phase and compare its energy with the energies of magnetic phases, when the number of the conduction band electron per site is near one. We present a phase diagram which shows the occurrence of three phases: Kondo, antiferromagnetic and paramagnetic phases. Our model in the mean-field approximation also shows a somewhat flat Kondo temperature, for large values of , as a function of the exchange coupling J between conduction and localized f electrons. Finally we show some scaling effects between and J and we define a corresponding Kondo temperature. Received 21 September 1998 and Received in final form 8 February 1999  相似文献   

20.
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate time scale of the MCT β-process. An analysis of the temperature dependence of the α-relaxation time suggests that the critical temperature, T c, of MCT decreases with D. If the confinement is not too strong ( D≥10monomer diameter), the static structure factor of the film coincides with that of the bulk when compared for the same distance, T - T c(D), to the critical temperature. This suggests that T - T c(D) is an important temperature scale of our model both in the bulk and in the films. Received 12 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号