首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground state of ultracold fermions in the presence of effects of orbital and Zeeman magnetic fields is analyzed. Five different states are found: unpolarized superconducting state, partially and fully polarized normal states and phase separated regions, partially or fully polarized. The system, in the presence of orbital synthetic magnetic field effects, shows non-monotonous changes of the phase boundaries when electron concentration is varied. We observe not only reentrant phenomena, but also density dependent oscillations of different areas of the phase diagram. Moreover the chemical potential shows oscillatory behavior and discontinuities with respect to changes in the number of fermions.  相似文献   

2.
The spin polarization of the FQHE ground states at fixed filling factors is analyzed within a composite fermion model. As a function of the perpendicular magnetic field several cross‐overs between differently polarized ground states are predicted, in agreement with recent experimental investigations. The magnetic field and temperature scalings of the polarization, as well as the magnetic field dependence of the spin‐flip gap are studied.  相似文献   

3.
The effect of a magnetic field on a spinor exciton-polariton condensate has been investigated. A quenching of a polariton Zeeman splitting and an elliptical polarization of the condensate have been observed at low magnetic fields B<2 T. The effects are attributed to a competition between the magnetic field induced circular polarization buildup and the spin-anisotropic polariton-polariton interaction which favors a linear polarization. The sign of the circular polarization of the condensate emission at B<3 T is negative, suggesting that a dynamic condensation in the excited spin state rather than the ground spin state takes place in this magnetic field range. From about 2T on, the Zeeman splitting opens and from then on the slope of the circular polarization degree changes its sign. For magnetic fields larger than the 3 T, the upper spin state occupation is energetically suppressed and circularly polarized condensation takes place in the ground state.  相似文献   

4.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases superexponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.  相似文献   

5.
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0相似文献   

6.
The average electron spin polarization Rho of a two-dimensional electron gas confined in GaAs/GaAlAs multiple quantum wells was measured by NMR near the fractional quantum Hall state with filling factor nu = 2/3. Above this filling factor (2/3< or = nu < 0.85), a strong depolarization is observed corresponding to two spin flips per additional flux quantum. The most remarkable behavior of the polarization is observed at nu = 2/3, where a quantum phase transition from a partially polarized (Rho approximately 3/4) to a fully polarized (Rho = 1) state can be driven by increasing the ratio between the Zeeman and the Coulomb energy above a critical value eta(c) = Delta(Z)/Delta(C) = 0.0185.  相似文献   

7.
It is well known that the nu = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for nu = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.  相似文献   

8.
罗军  孙献平  曾锡之  詹明生 《中国物理》2007,16(4):998-1007
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification \delta a(\bm S \cdot \bm I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change \delta a(\bm S \cdot \bm I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.  相似文献   

9.
Based on the integrable Gaudin model and local density approximation, we discuss the ground state of a one-dimensional trapped Fermi gas with imbalanced spin population, for an arbitrary attractive interaction. A phase separation state, with a polarized superfluid core immersed in an unpolarized superfluid shell, emerges below a critical spin polarization. Above it, coexistence of polarized superfluid matter and a fully polarized normal gas is favored. These two exotic states could be realized experimentally in highly elongated atomic traps, and diagnosed by measuring the lowest density compressional mode. We identify the polarized superfluid as having an Fulde-Ferrell-Larkin-Ovchinnikov structure, and predict the resulting mode frequency as a function of the spin polarization.  相似文献   

10.
吴正华  赵明信 《光学学报》1995,15(6):83-688
强磁场中的Cs原子有较大的超精细塞曼分裂,实验用频率可调谐的窄线宽半导体激光调谐到各超精细塞曼能级上进行光泵浦,利用稳态吸收谱方法研究了原子的光泵浦。表明基态超精细相互作用的碰撞修正项导致的驰豫跃迁是谱形状和电子自旋极化新特征的根缘。同时提出了强场下极化度的一种测量方法。  相似文献   

11.
A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the electrons occurs, leading to stabilization of their polarization due to formation of a nuclear spin polaron [I. A. Merkulov, Phys. Solid State 40, 930 (1998)]. Spin depolarization of both systems is consequently greatly reduced, and spin memory of the coupled electron-nuclear spin system is retained over 0.3 sec at temperature of 2 K.  相似文献   

12.
We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron–electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.  相似文献   

13.
The density driven quantum phase transition between the unpolarized and fully spin polarized nu = 2/3 fractional quantum Hall state is accompanied by hysteresis in accord with 2D Ising ferromagnetism and domain formation. The temporal behavior is reminiscent of the Barkhausen and time-logarithmic magnetic after-effects ubiquitous in familiar ferromagnets. It too suggests domain morphology and, in conjunction with NMR, intricate domain dynamics, which is partly mediated by the contact hyperfine interaction with nuclear spins of the host semiconductor.  相似文献   

14.
NMR measurements of the electron spin polarization (P) have been performed on a 2D electron system at and around half-filled lowest Landau level. Comparing the magnetic field and the temperature dependence of P to models of free and interacting composite fermions (CF), the imbalance of spin-up and spin-down CF Fermi seas is mapped as a function of Zeeman energy. Independent measurements of the CF effective mass, g factor, and Fermi energy are obtained from the thermal activation of P in tilted fields. The filling factor dependence of the P for 2 / 5相似文献   

15.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

16.
There has been much recent research into polarizing an antiproton beam, instigated by the recent proposal from the PAX (Polarized Antiproton eXperiment) project at GSI Darmstadt. It plans to polarize an antiproton beam by repeated interaction with a polarized internal target in a storage ring. The method of polarization by spin filtering requires many of the beam particles to remain within the ring after scattering off the polarized internal target via electromagnetic and hadronic interactions. We present and solve sets of differential equations which describe the buildup of polarization by spin filtering in many different scenarios of interest to projects planning to produce high-intensity polarized beams. These scenarios are: 1) spin filtering of a fully stored beam; 2) spin filtering while the beam is being accumulated, i.e. unpolarized particles are continuously being fed into the beam; 3) the particle input rate is equal to the rate at which particles are being lost due to scattering beyond the ring acceptance angle, the beam intensity remaining constant; 4) increasing the initial polarization of a stored beam by spin filtering; 5) the input of particles into the beam is stopped after a certain amount of time, but spin filtering continues. The rate of depolarization of a stored polarized beam on passing through an electron cooler is also shown to be negligible.  相似文献   

17.
Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in the optical and spin polarization of the QDs is observed with increasing magnetic field in the range 0-2?T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by the hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields, when these spin depolarization processes are quenched, the electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits a rather strong field dependence under non-resonant excitation. In contrast, such a field dependence is practically absent in more 'isotropic' QD structures (e.g.?single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e.?wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.  相似文献   

18.
Recent experiments that are reviewed explore the spin states of a ring-shaped many-electron quantum dot. Coulomb-blockade spectroscopy is used to access the spin degree of freedom. The Zeeman effect observed for states with successive electron number allows to select possible sequences of spin ground states of the ring. Spin-paired orbital levels can be identified by probing their response to magnetic fields normal to the plane of the ring and electric fields caused by suitable gate voltages. This narrows down the choice of ground-state spin sequences. A gate-controlled singlet–triplet transition is identified and the size of the exchange interaction matrix element is determined.  相似文献   

19.
We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a function of polarization and interaction strength. The equations of state of the uniform superfluid and normal phase are determined using quantum Monte Carlo simulations. We find three different mixed states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially polarized normal gas.  相似文献   

20.
The Helmholtz free energy F of the 2D electron fluid is calculated using a mapping to a classical Coulomb fluid [Phys. Rev. Lett. 87, 206404 (2001)]]. For density parameters r(s) such that approximately 25>r(s), the fluid is unpolarized at all temperatures t=T/E(F), where E(F) is the Fermi energy. For higher r(s), the system is fully spin polarized for t smaller than approximately 0.35, and partially polarized for approximately 0.35相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号