首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The perovskite-type oxides LaMO3 (M = Fe, Co, Ni) were prepared by a glycine combustion method using La (NO3)3·6H2O and Fe (NO3)3·9H2O, Co (NO3)2·6H2O, Ni (NO3)2·6H2O as the raw materials, respectively, and C2H5NO2 as gelating agent. The products were characterized by XRD, TEM, HRTEM, SEM and BET. The catalytic activity of LaMO3 (M = Fe, Co, Ni) nanocrystals on thermal decomposition of NH4CIO4 (AP) were carried out by DTA and TG. The burning rate of the propellant modified by obtained LaCoO3 was measured by strand burner method. The experimental results showed that the obtained products can play a catalytic role in the thermal decomposition of AP and combustion of AP-based propellant. The order of the catalytic performance of obtained products on AP thermal decomposition is LaCoO3 > LaNiO3 ≈ LaFeO3. Adding 2% of LaCoO3 nanocrystals to AP decreases the decomposition temperature by 134 °C and increases the heat of decomposition by 0.8 kJ g−1. Compared with basic propellant, the burning rate of propellant modified by 1% LaCoO3 nanocrystals increases around 8%.  相似文献   

2.
The molar heat capacities of 1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole (Ornidazole) (C7H10ClN3O3) with purity of 99.72 mol% were measured with an adiabatic calorimeter in the temperature range between 79 and 380 K. The melting-point temperature, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 358.59±0.04 K, 21.38±0.02 kJ mol−1 and 59.61±0.05 J K−1 mol−1, respectively, from fractional melting experiments. The thermodynamic function data relative to the reference temperature (298.15 K) were calculated based on the heat capacities measurements in the temperature range from 80 to 380 K. The thermal stability of the compound was further investigated by DSC and TG. From the DSC curve an intensive exothermic peak assigned to the thermal decomposition of the compound was observed in the range of 445-590 K with the peak temperature of 505 K. Subsequently, a slow exothermic effect appears when the temperature is higher than 590 K, which is probably due to the further decomposition of the compound. The TG curve indicates the mass loss of the sample starts at about 440 K, which corresponds to the decomposition of the sample.  相似文献   

3.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

4.
Natural dolomite powders obtained from caves which give unusual high resistance building materials, have been decomposed in a Knudsen cell at high CO2 pressures in the temperature range of 913-973 K. XRD traces for the final solid products, after the first half thermal decomposition, have shown, that beside the XRD patterns for the calcite and MgO, the existence of a new structure with major peaks at 2θ equal to 38.5 and 65°. This finding has been ascribed to a solid solution of MgO in calcite. The kinetic analysis of the TG curves yield a total apparent enthalpy (ΔH) for the decomposition equal to 440±10 kJ mol−1 for a range of fraction decomposed (α) varying between 0.2 and 0.7. This value is much closer to the theoretical expected at 950 K value ΔH=486 kJ mol−1 for the dolomite decomposition in CO2 environment, where CaO, MgO and oxides of solid solution can be the solid reaction products. The rate determining step is the transport of CO2 across the reacting interface through an high activated thermal process due to solid state diffusion of CO32− in the bulk and/or the grain boundaries phases of CaCO3 and/or of the solid solution. The microstructure evolution of the solid products follows a shear-transformation mechanism. At temperatures below 943 K, porous product particles are characterized by a monomodal narrow pore size distribution around 0.05 μm. At higher temperatures, a critical level of tensions inside the particles is reached and a bimodal pore size distribution around 1 and 0.05 μm is formed.  相似文献   

5.
The structure, magnetism, transport and thermal expansion of the perovskite oxide LaNi0.5Fe0.5O3 were studied over a wide range of temperatures. Neutron time-of-flight data have shown that this compound undergoes a first-order phase transition between ∼275 and ∼310 K. The structure transforms from orthorhombic (Pbnm) at low temperatures to rhombohedral (Rc) above room temperature. This phase transition is the cause for the previously observed co-existence of phases at room temperature. The main structural modification associated with the phase transition is the change of tilting pattern of the octahedra from a+bb at low temperatures to aaa at higher. Magnetic data strongly suggests that a spin-glass magnetic state exists in the sample below 83 K consistent with the absence of magnetic ordering peaks in the neutron data collected at 30 K. At high temperatures the sample behaves as a small polaron electronic conductor with two regions of slightly different activation energies of 0.07 and 0.05 eV above and below 553 K, respectively. The dilatometric data show an average thermal expansion coefficient of 14.7×10−6 K−1 which makes this material compatible with frequently used electrolytes in solid oxide fuel cells.  相似文献   

6.
Polycrystalline samples of strontium series perovskite type oxides, SrHfO3 and SrRuO3 were prepared and the thermophysical properties were measured. The average linear thermal expansion coefficients are 1.13×10−5 K−1 for SrHfO3 and 1.03×10−5 K−1 for SrRuO3 in the temperature range between 423 and 1073 K. The melting temperatures Tm of SrHfO3 and SrRuO3 are 3200 and 2575 K, respectively. The longitudinal and shear sound velocities were measured by an ultrasonic pulse-echo method at room temperature in air, which enables to evaluate the elastic moduli and Debye temperature. The heat capacity was measured by using a differential scanning calorimeter, DSC in high-purity argon atmosphere. The thermal diffusivity was measured by a laser flash method in vacuum. The thermal conductivities of SrHfO3 and SrRuO3 at room temperature are 5.20 and 5.97 W m−1 K−1, respectively.  相似文献   

7.
Sodium orthonitrate (Na3NO4) is an unusual phase containing the first example of isolated tetrahedrally bonded NO43− groups. This compound was obtained originally by heating together mixtures of Na2O and NaNO3 for periods extending up to >14 days in evacuated chambers. Considering the negative volume change between reactants and products, it was inferred that a high-pressure synthesis route might favor the formation of the Na3NO4 compound. We found that the recovered sample is likely to be a high-pressure polymorph, containing NO43− groups as evidenced by Raman spectroscopy. The high-pressure behavior of Na3NO4 was studied using Raman spectroscopy and synchrotron X-ray diffraction in a diamond anvil cell above 60 GPa. We found no evidence for major structural transformations, even following laser heating experiments carried out at high pressure, although broadening of the Raman peaks could indicate the onset of disordering at higher pressure.  相似文献   

8.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

9.
Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380 K. The melting point, molar enthalpy (ΔfusHm) and entropy (ΔfusSm) of fusion of this compound were determined to be 365.29±0.06 K, 28.193±0.09 kJ mol−1 and 77.180±0.02 J mol−1 K−1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290 °C with the peak temperature at 292.7 °C. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293 °C corresponding to the maximum decomposition rate.  相似文献   

10.
A complex of holmium perchlorate coordinated with l-glutamic acid, [Ho2(l-Glu)2(H2O)8](ClO4)4·H2O, was prepared with a purity of 98.96%. The compound was characterized by chemical, elemental and thermal analysis. Heat capacities of the compound were determined by automated adiabatic calorimetry from 78 to 370 K. The dehydration temperature is 350 K. The dehydration enthalpy and entropy are 16.34 kJ mol−1 and 16.67 J K−1 mol−1, respectively. The standard enthalpy of formation is −6474.6 kJ mol−1 from reaction calorimetry at 298.15 K.  相似文献   

11.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

12.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

13.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

14.
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH3CH2OCS2 at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX, with 2.0 mol L−1 HCl generating ethanol and carbon disulfide, CS2. A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS2 is selectively detected by UV absorbance at 206 nm (? = 65,000 L mol−1 cm−1). The measured absorbance is directly proportional to EtX concentration present in the sample solutions. The Beer's law is obeyed in a 1 × 10−6 to 2 × 10−4 mol L−1 concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 × 10−7 mol L−1, corresponding to 38 μg L−1. At flow rates of 200 μL min−1 of the donor stream and 100 μL min−1 of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 μL injections of 1 × 10−5 mol L−1 EtX). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX concentration during a laboratory study of the EtX adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore.  相似文献   

15.
M. Vilar 《Talanta》2007,71(4):1629-1636
Different analytical methods for the determination of lead in Orujo spirits by electrothermal atomic absorption spectrometry (ETAAS) were developed using permanent modifiers (W, Ir, Ru, W-Ir and W-Ru) thermally deposited on platforms inserted in pyrolitic graphite tubes and Pd-Mg(NO3)2 conventional modifier mixture. In all cases, the Pb determination was performed without any sample pretreatment or preconcentration steps. The comparison between the chemical modifiers employed has been made in terms of pyrolysis and atomization temperatures, characteristic masses, detection limits, and atomization and background signal shapes. The limits of detection obtained were 0.375, 0.387, 0.109, 0.251 and 0.267 ng mL−1 for W, Ir, Ru, W-Ir and W-Ru, respectively and 0.710 ng mL−1 for Pd-Mg(NO3)2. The characteristic masses were 14.1, 11.2, 5.6, 8.3 and 9.3 pg for W, Ir, Ru, W-Ir and W-Ru, respectively and 22.2 pg for Pd-Mg(NO3)2. For all the developed procedures using the different modification systems, the relative standard deviations (<10%) and the analytical recoveries (95-103%) were acceptable. The more suitable methods for Pb determination in distillate spirits were those using permanent modifiers in contrast with classical Pd-Mg(NO3)2. The best analytical performance was achieved for W, Ir and W-Ir methods, which were applied to lead determination in Orujo spirit samples from Galicia (NW Spain). The Pb concentrations found in the analyzed samples were comprised in the range (<LOD to 1.5 μg mL−1).  相似文献   

16.
Biphen(OPi-Pr) and (COD)PtCl2 give Biphen(OPi-Pr)PtCl2 which upon treating with ethyl Grignard forms Biphen(OPi-Pr)PtEt2. The thermal decomposition of Biphen(OPi-Pr)PtEt2 was investigated in the temperature range of 353-383 K. The clean and quantitative formation of the Pt(Ethene) adduct was observed. X-ray structures of a molecule in the solid state of all three reaction products and two further related complexes with phenyl fingers instead of i-Pr have been determined. For the complexes with i-Pr fingers a decisive deviation from a square plane is observed in contrast to the complexes with phenyl fingers. The P-Pt-P angle increases from about 95° in Biphen(OPi-Pr)PtCl2 to about 120° in Biphen(OPi-Pr)Pt(Ethene), forcing the bridging C-C single bond of the biphenyl fragment as near as 4.17 Å to the Pt center. No through-space coupling between the bridging C atoms and the Pt center could be observed in 13C NMR spectroscopy. No bond lengthening of the bridging C-C single bond in the biphenyl fragment was observed in Biphen(OPi-Pr)Pt(Ethene) in comparison to the precursor complexes. The thermal decomposition of Biphen(OPi-Pr)PtEt2 can be described by a first-order kinetic and the activation parameters were determined (temperature range: 353-383 K; ΔH = 173.8 ± 16.2 kJ/mol and ΔS = 104.7 ± 44.1 J/(mol K)). The reaction kinetics were also measured for perdeuterated ethyl groups yielding in a kinetic isotopic effect of 1.56 ± 0.14 which was almost temperature-independent. Selective deuteration at α and β position of the ethyl group, respectively, showed that β-H elimination takes place fast in comparison to the complete thermolysis. In the temperature range of 333-353 K only a scrambling of the deuterium atoms was found without further decomposition (temperature range: 333-353 K; ΔscramH = 76.1 ± 15.2 kJ/mol, ΔscramS = −80.7 ± 45.5 J/(mol K) for Biphen(OPi-Pr)PtEt2-d6). The ethene is not lost during the scrambling process. The scrambling process is connected with a primary KIE decisively larger than 1.56. Biphen(OPi-Pr)Pt(Ethene) exchanges the coordinated ethene with ethene in solution as proven by labeling experiments. Both a dissociative and an associative mechanism could be shown to take place as ethene exchange reaction by means of VT1H NMR spectroscopy via line shape analysis (temperature range: 333-373 K; ΔassH = 26.9 ± 29.6 kJ/mol, ΔassS = −148.0 ± 87.5 J/(mol K), ΔdissH = 86.0 ± 6.5 kJ/mol, ΔdissS = 5.4 ± 17.8 J/(mol K)). The Pt(0) complex formed during the dissociative loss of ethene activates several substrates among them: O2, H2, H2SiPh2 via Si-H activation, MeI presumably via forming a cationic methyl adduct and ethane via C-H activation but it was proven that the bridging C-C single bond of the biphenyl fragment is not even temporarily broken. The materials were characterized by means of 1H NMR, 13C NMR, 31P NMR, 195Pt NMR, EA, MS, IR, X-ray analysis and polarimetric measurement where necessary.  相似文献   

17.
Jiao CX  Niu CG  Huan SY  Shen Q  Yang Y  Shen GL  Yu RQ 《Talanta》2004,64(3):637-643
The carbazole derivative, with an amino group in 9-position (9-methylacryloylamino carbazole (MAC), has been utilized to prepare a fluorescent sensor and used for the determination of NO2 based on the reaction between nitrite (NO2) and excess I to form I3, which can quench the fluorescence of carbazole derivative. MAC, as a fluorescent carrier, has a terminal double bond and is covalently immobilized on a quartz glass plate surface by photo-polymerization to prevent the leakage of the dye. The sensor shows sufficient repeatability, selectivity, operational lifetime of 8 weeks, and a fast response of less then 30 s. NO2 can be determined in the range between 1.0×10−6 and 1.0×10−4 mol l−1 with a detection limit of 8.0×10−7 mol l−1 at pH of 2.0. The quenching mechanism is discussed. Most commonly coexisting ions do not interfer with the NO2 assay.  相似文献   

18.
Melting reactions of Cu, CuCl, S, and Bi2S3 yield black, shiny needles of Cu22(1)Bi12S21(1)Cl16(1). The compound decomposes peritectically at 649(5) K. Oxidation state +I of the copper atoms is supported by Cu-K-XANES. The compound crystallizes in the hexagonal space group P6/m with a=2116.7(7) pm and c=395.17(5) pm. Seven anions coordinate each of the two independent bismuth cations in the shape of mono-capped trigonal prisms. These polyhedra share edges and faces to form trigonal and hexagonal tubes running along [0 0 1]. The hexagonal tubes are centered by chloride ions, which are surrounded by disordered copper cations. The majority of copper cations are distributed over numerous sites between the tubes. The Joint Probability Density Function (JPDF) reveals a continuous pathway along [0 0 1]. The high mobility of the copper cations along [0 0 1] was demonstrated by impedance spectroscopy and DC polarization measurements on single crystals. The ionic conductivity at 450 K is about σion=0.06 S cm−1, and the activation energy for Cu+ ion conduction is Ea=0.44 eV. The chemical diffusion coefficient of copper is in the order of Dcuδ=1019 cm−3 at 420 K. The electronic band gap (p-type conductor) was determined as Eg=0.06 eV. At room temperature the thermal conductivity of a pressed pellet is about κ=0.3 W K−1 m−1 and the Seebeck coefficient is S=43 μV K−1.  相似文献   

19.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

20.
Molybdenum, Ir, Ru, Mo-Ir, Mo-Ru thermally coated on to platforms inserted in pyrolytic graphite tubes as permanent modifiers and Pd + Mg(NO3)2 conventional modifier mixture have been employed for the determination of cadmium and lead in dissolved sediments and soil samples by electrothermal atomic absorption spectrometry (ETAAS). Optimum masses and mass ratios of permanent modifiers for the analysis of Cd and Pb in sample solutions have been investigated. The 280 μg of Mo, 200 μg of Ir, 200 μg of Ru, 280 μg of Mo + 200 μg of Ir or 280 μg of Mo + 200 μg of Ru has been found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 for increasing thermal stabilization of analytes and for decreasing the most serious interferences. Pyrolysis and atomization temperatures, atomization and background signal shapes, characteristic masses and detection limits of analytes in dissolved samples with or without permanent and conventional modifiers have been compared. The detection limits and characteristic masses obtained with Mo-Ir coated platform are 0.01 μg g−1 and 1.1 pg for Cd and 0.09 μg g−1 and 19 pg for Pb, respectively. Long-term stabilities for analytes in samples with Mo, Mo-Ir, Mo-Ru and Pd + Mg(NO3)2 have been studied. Cadmium and lead contents have been determined in certified and standard reference materials by using optimum conditions investigated and the results obtained with Mo-Ir or Mo-Ru were in agreement with the values of certified reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号