首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Trifluoromethylated enynyl sulfones 3 were reacted with 2-4 equiv of phenyl, n-hexyl, trimethylsilyl, or triisopropylsilyl substituted ethynyllithium reagents in THF or ether at 0 °C to give trifluoromethylated enediynes 6 (Z)-stereoselectively in 41-96% yields. The reactions of β-fluoro-β-trifluoromethylvinyl sulfone 5 with same ethynyllithium reagents (4 equiv) afforded the corresponding enediynes 6 in 41-90% yields. The cross-coupling reactions of 6 bearing TMS group with aryl iodides in the presence of Pd(PPh3)2Cl2, Ag2CO3, and n-Bu4NBr provided the corresponding enediynes 6 in 20-71% yields. Dimerization of (Z)-6 bearing TMS group in the presence of CuBr2 and K2CO3 yielded dimer (Z,Z)-7 in good yield.  相似文献   

2.
3,4-cis-4-Acetoxy-3-O-acetyl-4-dehydro-5,7,3′,4′-tetra-O-benzyl-(+)-catechin (1a) or (−)-epicatechin (1b) reacted high regio- and stereo-selectively with 1.5 equiv of the 5,7,3′,4′-tetra-O-benzyloxyflavan-3-ol (4a or 4b) in the presence of 1 equiv of TMSOTf to give the corresponding procyanidins. On the other hand, the self-condensation of 1a in the presence of a catalytic amount of B(C6F5)3 afforded wide-range procyanidins from dimer to 15-mer like a biomass.  相似文献   

3.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

4.
3,3-Bis(phenylthio)-1,1,1,2,2-pentafluorobutane 1 was reacted with aryllithium reagents (6 equiv) in ether at low to room temperature for 1-6 h to provide 2-aryl-1,1,1-trifluoro-3-phenylthio-2-butene 2 in 80-96% yields. Bromination of 2 with NBS in acetonitrile at reflux for 1-7 h afforded the corresponding allylic bromides 3 in 61-96% yields. Treatment of 3 with MCPBA (1.5 equiv) in methylene chloride at reflux temperature for 1-12 h resulted in the formation of 1-aryl-1-trifluoromethylallenes 4 in 74-96% yields.  相似文献   

5.
Trifluoropropynyllithium was reacted with 1 equiv of Weinreb benzamides in THF at −78 to 0 °C, followed by treatment with 4 equiv of trifluoromethanesulfonyl chloride to give α,β-dichloro-β-trifluoromethylated enones 1 in 61-68% yield. The reactions of 1a with substituted amidines or hydrazines in refluxing 1,4-dioxane-CH3CN afforded trifluoromethylated chloropyrimidines 3 and chloropyrazoles 6 in 58-98% yields. The microwave-assisted coupling reactions of 3 with substituted phenylstannane and allylstannane in refluxing CH3CN in the presence of Pd(PPh3)4 provided the corresponding phenyl and allyl substituted pyrimidines 4 in 89-98% yields.  相似文献   

6.
Cu(I)-catalyzed 1,3-dipolar cycloaddition (click reaction) of 1 mol equiv of N,N′-di-prop-2-ynyl-phthalamide (1a), N,N′-di-prop-2-ynyl-isophthalamide (1b), and pyridine-2,6-dicarboxylic acid bis-prop-2-ynylamide (1c), respectively with 2 mol equiv of 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide (2a), 2-azidoethyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (2b), and 2-azidoethyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranoside (2c), respectively, afforded the corresponding bis-cycloadducts 3-5, containing two 1,2,3-triazole moieties each, in 38-76% yield. Reaction of 1 mol equiv of 2c with 1 mol equiv of 1c under otherwise identical conditions gave the mono-cycloadduct 6, containing one 1,2,3-triazole and one 2-propynylamide moiety, in 77% yield. Reaction of 6 with 2a afforded 7, containing two different sugar moieties, in 67% yield.  相似文献   

7.
The yttrium chloride with the bridged bis(amidinate) L (L = Me3SiNC(Ph)N(CH2)3NC(Ph)NSiMe3) LYCl(DME) (2) was synthesized and structurally characterized. Treatment of LLnCl(sol)x (Ln = Yb, sol = THF, x = 2 1; Ln = Y, sol = DME, x = 1 2) with the dilithium salt Li2L(THF)0.5 afforded the novel bimetallic lanthanide complexes supported by three ligands, Ln22-L)3 · DME (Ln = Yb 3, Y 4; DME = dimethylether), instead of the designed complex LLn(μ2-L)LnL via the ligand redistribution reaction. Complexes 3 and 4 were fully characterized including X-ray analysis and 1H NMR spectrum for 4. Reaction of LnCl3 (Ln = Yb, Y) with 2 equiv. of Li2L(THF)0.5 gave the anionic complexes [Li(DME)3][L2Ln] (Ln = Yb 5, Y 6), which were confirmed by a crystal structure determination. The further study indicated that complexes 3 and 4 can also be synthesized by reaction of LnCl3 (Ln = Yb, Y) with 1.5 equiv. of Li2L(THF)0.5 or reaction of 1 and 2 with anionic complexes 5 and 6. Complexes 3, 4, 5 and 6 were found to be high active catalysts for ring-opening polymerization of ε-caprolactone (CL).  相似文献   

8.
The reactions of α-trifluoromethylated α-arylacetates 1 with 3 equiv of hydrazine, methylhydrazine or benzylhydrazine in 1,4-dioxane at reflux for 24 h afforded the corresponding 5-fluoropyrazolin-3-one derivatives 3a-m in high yields. Similarly, treatment of 1 with 3 equiv of PhNLiNH2 in THF at −78 °C, followed by warming to room temperature, resulted in the formation of 3n-s in high yields.  相似文献   

9.
2-(Ferrocenylmethyl)amino-2-methylpropan-1-ol was synthesized and converted to the respective ammonium bromide ([1H]Br ≡ 2) and dihydrogenphosphate ([1H]H2PO4 ≡ 3). The solid-state structures of 1, 2 and the solvated salt 3 · 1/6Et2O (3a) have been determined by X-ray diffraction. The solid-state assemblies of 1 and 2 are dominated by infinite ladder-like arrays interconnected by hydrogen bonds whereas the solid-state structure of 3a is built up from linear hydrogen-bonded dihydrogenphosphate chains, which are interlinked via hydrogen bonds to the cations [1H]+ into a complicated three-dimensional network. Compound 1 and its interactions with Bu4NBr and Bu4NH2PO4 in solution were further studied by electrochemical methods and NMR titrations.  相似文献   

10.
Single-electron oxidation of the known Cr(II) bis(amidinate) Cr[(Me3SiN)2CPh]2 (1) provides synthetic access to neutral Cr(III) complexes. The complexes Cr[(Me3SiN)2CPh]2X were prepared by reaction of 1 with AgO2CPh (X = O2CPh, 2), of 1 with iodine in THF (X = I/THF, 3), or of 1 with iodine in pentane, followed by addition of 2-adamantanone (X = I/2-adamantanone, 4). Treatment of 2 or 3 with C3H5MgCl resulted in the thermally stable allyl complex (X = η3-C3H5, 5). A preliminary kinetics study of the reaction of 1 with excess allyl benzoate and allyl acetate was performed. The molecular structures of 2, 3 and 5 were confirmed by single crystal X-ray diffraction.  相似文献   

11.
The lithiation of 2,7-dihydrodinaphthoheteroepines (5) with 2.2 equiv of lithium naphthalenide in THF at −78 °C gives dianionic intermediates 8, which by reaction with different electrophiles [H2O, D2O, tBuCHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO] at the same temperature, followed by hydrolysis, leads to unsymmetrically 2,2′-disubstituted binaphthyls 6. When the lithiation is performed with an excess of lithium in the presence of a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 10 mol %), a double reductive cleavage takes place to give dianionic intermediate 9, which by reaction with different electrophiles [H2O, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO], followed by hydrolysis with water, yields symmetrically 2,2′-disubstituted binaphthyls 7. In the case of starting from (R)-5a, the reductive opening by treatment with 2.2 equiv of lithium naphthalenide followed by reaction with H2O or (CH2)5CO as electrophiles and final hydrolysis, leads to enantiomerically pure compounds (R)-6aa and (R)-6af, respectively.  相似文献   

12.
Magnesium complexes containing ketiminate ligands were synthesized and characterized. MgBu2 reacted readily in toluene with two equiv. of [MeC(O)CHC(NHAr)Me], where Ar = 2,6-diisopropylphenyl, to generate [MeC(O)CHC(NAr)Me]2Mg (1) in 43% yield. The four-coordinate magnesium compound 1 is very moisture sensitive and acts as a Lewis acid, accepting one equiv. of Lewis base to form five-coordinate magnesium compounds. Compound [MeC(O)CHC(NAr)Me]2Mg[MeC(O)CHC(NHAr)Me] (2) was obtained in 57% yield from the reaction in toluene of MgBu2 with three equiv. of [MeC(O)CHC(NHAr)Me]. Treatment of 1 with one equiv. of free ketimine ligands [MeC(O)CHC(NHAr)Me] also led to the formation of 2. The bulky η1-ketimine of 2 can be replaced with a less bulky Lewis base such as pyridine. Treatment of 1 with excess pyridine in toluene at ambient temperature led to the formation of compound [MeC(O)CHC(NAr)Me]2Mg[NC5H5] (3) as colorless crystalline solids in 51% yield. Compounds 1, 2, and 3 were characterized by NMR and X-ray crystallography. Compounds 2 and 3 showed no activity toward the polymerization of ε-caprolactone at 25 °C after 3 h. However, when the temperature was increased to 70 °C, compounds 2 and 3 efficiently catalyzed polymerization of ε-caprolactone to generate high molecular weight poly-ε-caprolactones. The polydispersity index (PDI) of these poly-ε-caprolactones is in the range 1.57-3.18.  相似文献   

13.
Perfluoroalkylated 4-trifluoroethylidene-1,3-dioxolanes 2a-p were prepared in quantitative yields from the reaction of new stable (trifluoromethyl)ethynylation reagent 1a with TBAF at −15 °C for 10 min, followed by treatment with phenyl perfluoroalkylated ketones at room temperature. The use of aldehydes under the same reaction condition afforded 1,3-dioxolanes 2q-r in good yields. The reaction of 1a with TBAF, followed by treatment with aldehydes or ketones at −15 °C for 10 min and then with trifluoroacetophenone at room temperature provided 1,3-dioxolane derivatives 2s-t in good yields. Tetrabutylammonium trifluoropropynylide [II] was treated with benzaldehyde derivatives at −15 °C for 10 min, followed by treatment with trifluoroacetophenone, to give the corresponding 1,3-dioxolanes 2u-z and 1,3-dioxines 3u-z with different reaction condition.  相似文献   

14.
Sulfur analogues of the soluble guanylate cyclase (sGC) inhibitor NS2028 1a are synthesized. Treating 8-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one oxime (6) with 1,1′-thiocarbonyldiimidazole (1.1 equiv) gave the carbamothioate 8-bromo-4H-[1,2,4]oxadiazolo[3,4-c][1,4]benzoxazine-1-thione (3a) in 83% yield. Alternatively reacting NS2028 1a with P2S5 (0.5 equiv) affords the carbamothioate 3a in 80% yield. Similar treatment of 8-aryl substituted NS2028 analogues 1b-d with P2S5 gave the carbamothioates 3b-d in 64-91% yields. Although quite stable, the carbamothioates 3a-d could be thermally isomerized in the presence of Cu (10 mol %) to afford the thiocarbamates 4a-d in high yields. Interestingly, in the case of carbamothioate 3a Pd and In metals also facilitated the isomerization. Furthermore, treatment of the thiocarbamates 4a-d with P2S5 (0.5 equiv) affords the carbamodithioates 5a-d in 72-89% yields. All new compounds are fully characterized including single crystal X-ray data for carbamothioate 3a and thiocarbamate 4a. Finally, a mechanism is proposed for the carbamothioate to thiocarbamate isomerization.  相似文献   

15.
The preparation of the barium β-diketonate complexes with crown-ethers [Ba(pta)2(18-crown-6)] (1), [Ba(pta)2(18-crown-6)] (THF) (2), [Ba(pta)2(18-dibenzocrown-6)](C6H5CH3) (3), [Ba(pta)2(18-dibenzocrown-6)] (4) (pta = 1,1,1-trifluoro-5,5-dimethylhexanedionato-2,4; 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; 18-dibenzocrown-6 = 6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]-hexaoxacyclooctadecane) is described. The complexes 1 and 2 have been synthesized from reaction of metallic barium with 2 molar equiv. of Hpta and 1 molar equiv. of 18-crown-6 in toluene; the complexes 3 and 4 from reaction of Ba(OH)2·8H2O with 1 molar equiv. 18-dibenzocrown-6 and 2 molar equiv. Hpta. The complexes were characterized by elemental analyses, IR-spectroscopy, 1H NMR spectroscopy. The crystal structures of 2 and 3 were determined by means of single-crystal X-ray diffraction methods. A single-crystal X-ray study of 2 and 3 has shown it be monomeric. The coordination number of Barium cation in 2 and 3 is nine owing to nine oxygen atoms from two pta ligands and crown-ether molecule.  相似文献   

16.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

17.
The first examples of diborane (4) compounds derived from amine cyanoboranes are described. A series of monobromo derivatives of amine cyanoboranes (A:BHBrCN), and dibromo derivatives (A:BBr2CN), 1-7, were prepared. Lithiation of the monobromo derivative of trimethylamine cyanoborane, using n-BuLi, did not produce the C-lithiated intermediate Li+ [CH2NMe2BHBrCN], but instead the B-lithiated intermediate Li+ [Me3NBHCN], was obtained. This intermediate, when allowed to react for 16 h, coupled with the un-lithiated trimethylamine monobromocyanoborane (Me3NBHBrCN) and resulted in diborane (4) derivative formation as the 2LiBr complex. The same result was obtained when one equiv of the trimethylamine monobromocyanoborane was added to the reaction mixture 1 h after lithiation. Following the same procedure, novel diborane (4) derivatives of amine cyanoboranes were successfully obtained, 8-11, as their 2LiBr complexes from the monobromo derivatives of the corresponding amine cyanoboranes. Molecular structures of the trimethylamine dibromocyanoborane, 6, and the triethylamine dibromocyanoborane, 7, were determined using X-ray crystallography.  相似文献   

18.
Bridged and unbridged N-heterocyclic carbene (NHC) ligands are metalated with [Ir/Rh(COD)2Cl]2 to give rhodium(I/III) and iridium(I) mono- and biscarbene substituted complexes. All complexes were characterized by spectroscopy, in addition [Ir(COD)(NHC)2][Cl,I] [COD = 1,5-cyclooctadiene, NHC =  1,3-dimethyl- or 1,3-dicyclohexylimidazolin-2-ylidene] (1, 4), and the biscarbene chelate complexes 12 [(η4-1,5-cyclooctadiene)(1,1′-di-n-butyl-3,3′-ethylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] and 14 [(η4-1,5-cyclooctadiene)(1,1′-dimethyl-3,3′-o-xylylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] were characterized by single crystal X-ray analysis. The relative σ-donor/π-acceptor qualities of various NHC ligands were examined and classified in monosubstituted NHC-Rh and NHC-Ir dicarbonyl complexes by means of IR spectroscopy. For the first time, bis(carbene) substituted iridium complexes were used as catalysts in the synthesis of arylboronic acids starting from pinacolborane and arene derivatives.  相似文献   

19.
The Lewis acid-promoted reaction of an ethenetricarboxylate derivative (1) with CF3-substituted propargyl alcohols has been examined. Reaction of γ-CF3 propargyl alcohols in the presence of zinc bromide gave five-membered CF3-containing tetrahydrofurans in 66-85% yield. The CF3 group activates alkyne as an electron-withdrawing group. On the other hand, reaction of γ-trifluoromethyl-α-aryl propargyl alcohols 2 with 1 in the presence of 1 equiv of SnCl4 gave cyclobutane derivatives 6 in 29-49% yield. Formation of cyclobutane 6a arises from the [2+2] cycloaddition between ethenetricarboxylate 1 and chloroallene 8, which is produced by the reaction of propargyl alcohol 2a and SnCl4.  相似文献   

20.
Copper(I) complexes of short-bite aminobis(phosphonite), PhN{P(–OC10H6(μ-S)C10H6O–)}2 (1) have been synthesized. Reactions of 1 with an excess of CuX (X = Cl, Br, and I) afforded the ligand-bridged binuclear complexes, [PhN(PR-κP)2{Cu(μ-X)(MeCN)}2] (2, X = Cl; 3, X = Br; 4, X = I; R = –OC10H6(μ-S)C10H6O–), whereas treatment with 0.5 equiv. of [Cu(MeCN)4]PF6 produces the mononuclear bischelated cationic complex, [{PhN(PR-κP)2}2Cu](PF6) (5). Single crystal X-ray structures of complexes 3 and 4 are reported. Complex 3 shows strong π–π stacking interactions between the naphthyl moieties, whereas complex 4 shows ligand-supported Cu?Cu metallophilic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号