首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
La1-xSrxCoO3-δ体系中缺陷形成与输运过程研究   总被引:1,自引:0,他引:1  
利用碘滴定法测定了钙钛矿型复合氧化物La1-xSrxCoO3-δ系列样品中金属元素的平均价态及氧的非化学计量值。实验发现:La1-xSrxCoO3-δ样品中的Co元素的平均价态随Sr掺杂量x的增加先增后减,室温下,在x=0.5时取最大值,温度升高,最大值移至x=0.4处。实验还发现,样品的电导率和330 K时的内耗峰峰高随Sr掺杂量x的变化也有类似极值,且极值点也分别出现在0.4和0.5左右,表明复合氧化物La1-xSrxCoO3-δ中的电子传导是通过极化子进行的。对于同一Sr掺杂量的样品,Co元素平均价态随温度的增加而减小。  相似文献   

2.
采用尿素-硝酸盐法制备了Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.5)阴极材料.用TG-DSC,SEM,XRD和热膨胀仪对材料的形成过程、晶体结构、烧结体的微观结构及热膨胀性能进行了表征.用直流四端子法测试材料在500~800℃范围内的电导率.结果表明,制备样品的主晶相为正交钙钛矿结构,体系含有杂相;电导率随温度和Cu含量的变化关系表现为,x≤0.2时的样品随温度升高电导率降低,x≥0.3时随温度升高电导率增大,组成为x=0.2的样品电导率最高,500℃达到703.1 S·cm-1.材料的热膨胀系数随掺杂的Cu含量增加而降低.  相似文献   

3.
王亚楠  周和平 《无机化学学报》2008,24(10):1558-1563
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT.SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0-0.5)和Gd.0.8Sr0.2Co1-yFeyO3-δ(y=0-1),所合成的初始粉体在800℃下煅烧12 h后均形成了钙钛矿结构的单相固溶体.研究发现,Gd1-xSrxCoO3-δ(GSC)的电导率在600℃时达到了559 S·cm-1,由Ce0.8Cd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm2和0.064Ω·cm2,活化能仅为87.8 kJ·mol-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3 离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Cd0.8Sr0.2CoO3-δ/GDC复合阴极材料.  相似文献   

4.
Ba0.4Sr0.6Ci1-xFexO3-δ系阴极材料的制备和表征   总被引:1,自引:0,他引:1  
采用甘氨酸.硝酸盐(GNP)法合成了中温固体氧化物燃料电池阴极材料Ba0.4Sr0.6Co1-xFexO3-δ=0.0~0.8)系列粉体.利用XRD和SEM对材料的结构和微观形貌进行分析,用直流四端子法测量了烧结陶瓷体在中温(450~800℃)范围内的电导率.结果表明.制备的样品为单一钙钛矿相,随着Fe含量增加,XRD衍射峰值向高角度方向稍有偏移.电导率随着温度及Fe含量的变化出现极大值,在x<0.2时,Ba0.4Sr0.6Co1-xFexO3-δ系列烧结体在 (450~800℃)XE的电导率,随Fe掺入量的增大而增大,x=0.2样品的电导率最高,800℃时达244.7 S·cm-1,远超过文献报道值,进一步增大Fe含量导电性能变差.  相似文献   

5.
采用固相反应法合成钙钛矿氧化物材料Ln0.5Sr0.5CoO3(h=La,Pr,Nd,Sm,Eu)的超细粉体,研究了不同稀土元素掺杂时的晶体结构和电输运性能,分析了该钙钛矿体系结构的形成过程。实验表明,当烧结温度达到1200℃时,通过固相反应法可以形成稳定的单一的钙钛矿相。样品电导率在700℃附近出现最大值,低温段的导电行为符合小极化子导电机制,La0.5Sr0.5CoO3材料的电导率在中温范围内最大,适合作为中温固体燃料电池的阴极材料。  相似文献   

6.
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT-SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0~0.5)和Gd0.8Sr0.2Co1-yFeyO3-δ(y=0~1),所合成的初始粉体在800℃下煅烧12h后均形成了钙钛矿结构的单相固溶体。研究发现,Gd0.8Sr0.2CoO3-δ(GSC)的电导率在600℃时达到了559S&#183;cm^-1,由Ce0.8Gd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω&#183;cm^2和0.064Ω&#183;cm^2,活化能仅为87.8kJ&#183;mol^-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3+离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Gd0.8Sr0.2CoO3-δ/GDC复合阴极材料。  相似文献   

7.
采用低温燃烧合成技术制备了Lal-xSrxCu0.9Fe0.1O2.5-δ(x=0.1-0.4)粉体。利用X-射线衍射(XRD)和差热分析(DTA)技术对粉体的性能进行了表征。XRD结果表明,经800℃焙烧的La0.9Sr0.1Cu0.9Fe0.1O2.5-δ粉体的对称性较低,未形成钙钛矿结构,其余Lal-xSrxCu0.9Fe0.1O2.5-δ(x=0.2-0.4)粉体为四方钙钛矿结构,晶体结构参数之间满足关系式a=b≈2(2c)~(1/2)。DTA结果证明Lal-xSrxCu0.9Fe0.1O2.5-δ在800℃以下是热力学稳定的,不会发生分解反应。采用直流四电极法测试了Lal-xSrxCu0.9Fe0.1O2.5-δ试样在100—800℃之间的电导率。试样的电导率~(ln(σT)与1/T之间呈很好的线性关系,说明Lal-xSrxCu_(0.9)Fe0.1O2.5-δ在测试温度范围内服从小极化子导电机制。Sr掺杂量对试样的电导率和电导活化能有着明显的影响,当Sr掺杂量为0.3时,Lal-xSrxCu0.9Fe0.1O2.5-δ的电导率最高,电导活化能最小。  相似文献   

8.
采用柠檬酸溶胶-凝胶法制备了固体电解质Ce0.9Er0.1-xPrxO1.95+δ(x=0.02~0.08),利用X射线粉末衍射(XRD)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱研究了样品的微观结构和电性能.XRD结果表明,800℃煅烧的所有样品均形成了单相立方萤石结构;Raman光谱结果表明,Ce0.9Er0.05Pr0.05O1.95+δ具有氧缺位的立方萤石结构;XPS分析表明,Ce0.9Er0.05Pr0.05O1.95+δ存在氧缺位,Pr3+离子和Pr4+离子共存;AFM观测结果表明,1300℃下烧结的样品比1400℃下烧结的样品致密;交流阻抗谱结果表明,Pr掺杂量x=0.05时,Ce0.9Er0.05Pr0.05O1.95+δ的电导率最高(σ600℃=1.34×10-2S/cm,Ea=0.90 e V),比未掺杂Pr的Ce0.9Er0.1O1.95(σ600℃=8.81×10-3S/cm,Ea=0.92 e V)提高了52%,说明在Ce0.9Er0.1O1.95中适量掺杂Pr可提高材料的电导率,降低活化能.  相似文献   

9.
合成具有单相正交钙钛矿结构的La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4)系列样品, 碘量滴定法实验结果表明, 随着Sr掺入量的增加, Cu3+离子的含量逐渐增加. 电学性能研究结果表明, La0.7Sr0.3CuO3-δ电导率最高, 与La0.6Sr0.4CoO3-δ相比, La0.7Sr0.3CuO3-δ具有更好的电化学性能, 可作为一种新的中温固体氧化物燃料电池(IT-SOFC)阴极材料. 将La0.7Sr0.3CuO3-δ与不同质量比的中温电解质Ce0.85Sm0.15O2-δ(SDC) 固相混合, 制备复合阴极材料, 电化学性能测试结果表明, 掺入适量的SDC有利于降低La0.7Sr0.3CuO3-δ电极的极化, 获得性能更优越的IT-SOFC阴极材料, 提高在中温区单电池的输出功率.  相似文献   

10.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

11.
Reactivity of mixtures of La(III) oxide and Cu(II) oxalate/nitrate in hydrated as well as anhydrous state was studied using TG, DTA and XRD. Cu(II) oxide formed in the endothermic decomposition of mixture containing hydrated Cu(II) nitrate and La(III) oxide could not form La2CuO4 while Cu(II) oxide formed in the exothermic decomposition of mixture containing hydrated/anhydrous Cu(II) oxalate and La(III) oxide reacts with La(III) oxide and develops the phases CuLaO3 and La2CuO4. The maximum reactivity with respect to the formation of La2CuO4phase was observed in mixture containing anhydrous Cu(II) oxalate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Alkali and ammonium cobalt and zinc phosphates show extensive polymorphism. Thermal behavior, relative stabilities, and enthalpies of formation of KCoPO4, RbCoPO4, NH4CoPO4, and NH4ZnPO4 polymorphs are studied by differential scanning calorimetry, high-temperature oxide melt solution calorimetry, and acid solution calorimetry.α-KCoPO4 and γ-KCoPO4 are very similar in enthalpy. γ-KCoPO4 slowly transforms to α-KCoPO4 near 673 K. The high-temperature phase, β-KCoPO4, is 5-7 kJ mol−1 higher in enthalpy than α-KCoPO4 and γ-KCoPO4. HEX phases of NH4CoPO4 and NH4ZnPO4 are about 3 kJ mol−1 lower in enthalpy than the corresponding ABW phases. There is a strong relationship between enthalpy of formation from oxides and acid-base interaction for cobalt and zinc phosphates and also for aluminosilicates with related frameworks. Cobalt and zinc phosphates exhibit similar trends in enthalpies of formation from oxides as aluminosilicates, but their enthalpies of formation from oxides are more exothermic because of their stronger acid-base interactions. Enthalpies of formation from ammonia and oxides of NH4CoPO4 and NH4ZnPO4 are similar, reflecting the similar basicity of CoO and ZnO.  相似文献   

13.
文章合成了Lu(NO3)3(C2H5O2N)4.H2O,用红外和元素分析对其进行了表征。用高精度全自动绝热量热仪,测定了该配合物80-382 K温区的热容, 利用实验热容数据, 根据热容与焓、熵的热力学关系, 求出了配合物85-350 K温区内每隔5 K相对于298.15K的标准热力学函数(HT - H298.15)m和(ST - S298.15)m.在80-350 K温度区间内,配合物的热容随温度升高而增大,没有相转移点和热力学吸收峰的出现,该配合物在此温度区间内是稳定存在的。  相似文献   

14.
La0.15Sr0.85Ga0.3Fe0.7O3-δ(LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-δ(LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20℃to 1020℃, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ ?mol~(-1), respectively. The difference in oxygen permeation f  相似文献   

15.
Sulfur/oxygen-bridged incomplete cubane-type triphenylphosphine molybdenum and tungsten-clusters [Mo3S4Cl4(H2O)2(PPh3)3]·3THF (1A), [Mo3S4Cl4(H2O)2(PPh3)3]·2THF (2A), [Mo3OS3Cl4(H2O)2(PPh3)3]·2THF (1B), and [W3S4Cl4(H2O)2(PPh3)3]·2THF (1C) were prepared from the corresponding aqua clusters and PPh3 in THF/MeOH. On recrystallization from THF, procedures with and without addition of hexane to the solution gave 1A and 2A, respectively, while the procedures gave no effect on the formation of 1B and 1C. Crystallographic results obtained are as follows: 1A: monoclinic, P21/n, a=17.141(4) Å, b=22.579(5) Å, c=19.069(4) Å, =96.18(2)°, V=7337(3) Å3, Z=4, R(R w)=0.078(0.102); 1C: monoclinic, P2 1/c, a=12.635(1) Å, b=20.216(4) Å, c=27.815(3) Å, =96.16(1)°, V=7062(2) Å3, Z=4, R(R w)=0.071(0.083). If the phenyl groups are ignored, the molecule [Mo3S4Cl4(H2O)2(PPh3)3] in 2A has idealized CS symmetry with the mirror plane perpendicular to the plane determined by the metal atoms, while the molecule in 1A does not have the symmetry. The tungsten compound 1C is isomorphous with the molybdenum compound 2A. 31P NMR spectra of 1A, 2A, and 1C were obtained and compared with similar clusters with dmpe (1,2-bis(dimethylphosphino)ethane) ligands.  相似文献   

16.
Microwave irradiation of a suspension of γ-MnOOH in a 4 mol dm−3 LiOH solution brought about a rapid formation of semicrystalline orthorhombic LiMnO2 (o-LiMnO2) within 30 min at 120°C. Cubic Li1.6Mn1.6O4 was obtained by heating o-LiMnO2 at 400°C; lithium could be topotactically extracted from Li1.6Mn1.6O4 with acid to form cubic H1.6Mn1.6O4.  相似文献   

17.
The solid-solid interactions between manganese and magnesium oxides in absence and in presence of small amounts of Li2O have been investigated. The molar ratios between manganese and magnesium oxides in the form of Mn2O3 and MgO were varied between 0.05:1 to 0.5:1. The mixed solids were calcined in air at 400-1000°C. The techniques employed were DTA, XRD and H2O2 decomposition at 20-40°C.The results obtained revealed that solid-solid interactions took place between the reacting solids at 600-1000°C yielding magnesium manganates (Mg2MnO4, Mg6MnO8, MgMnO4 besides unreacted portions of MgO, Mn2O3 and Mn3O4). Li2O-doping (0.75-6 mol%) of the investigated system followed by calcination at 600 and 800°C decreased progressively the intensity of the diffraction lines of Mn2O3 (Bixbyite) with subsequent increase in the lattice parameter 'a' of MgO to an extent proportional to the amount of Li2O added. This finding might suggest that the doping process enhanced the dissolution of Mn2O3 in MgO forming solid solution. This treatment led also to the formation of Li2MnO3. Furthermore, the doping with 3 and 6 mol% Li2O conducted at 800°C resulted in the conversion of Mn2O3 into Mn3O4, a process that took place at 1000°C in absence of Li2O. The produced Li2MnO3 phase remained stable by heating at up to 1000°C. Furthermore, Li2O doping of the investigated system at 400-1000°C resulted in a progressive measurable increase in the particle size of MgO.The catalytic activity measurements showed that the increase in the molar ratio of Mn2O3 in the samples precalcined at 400-800°C was accompanied by a significant increase in the catalytic activity of the treated solids. The maximum increase in the catalytic activity expressed as reaction rate constant measured at 20°C (k 20°C) attained 3.14, 2.67 and 3.25-fold for the solids precalcined at 400, 600 and 800°C, respectively. Li2O-doping of the samples having the formula 0.1 Mn2O3/MgO conducted at 400-600°C brought a progressive significant increase in its catalytic activity. The maximum increase in the value of k 20°C due to Li2O attained 1.93 and 2.75-fold for the samples preheated at 400 and 600°C, respectively and opposite effect was found for the doped samples preheated at 800°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

19.
The results obtained showed that the addition of small amounts of LiNO3 to the reacting mixed solids, consisting of equimolar proportion of Fe2O3 and basic MgCO3 much enhanced the thermal decomposition of magnesium carbonate. The addition of 12 mol% LiNO3 (6 mol% Li2O) decreased the decomposition temperature of MgCO3 from 525.5 to362°C. MgO underwent solid–solid interaction with Fe2O3 at temperatures starting from800°C yielding MgFe2O4. The amount of ferrite produced increased by increasing the precalcination temperature of the mixed solids. However, the completion of this reaction required prolonged heating at elevated temperature above 1100°C. Doping with Li2O much enhanced the solid–solid interaction between the mixed oxides leading to the formation of MgFe2O4 phase at temperatures starting from 700°C. The addition of 6 mol% Li2O to the mixed solids followed by precalcination at 1050°C for 4 h resulted in complete conversion of the reacting oxides into magnesium ferrite. The heat treatment of pure and doped solids at 900–1050°C effected the disappearance of most of IR transmission bands of the free oxides with subsequent appearance of new bands characteristic for MgFe2O4 structure. The promotion effect of Li2O towards the ferrite formation was attributed to an effective increase in the mobility of the various reacting cations. The activation energy of formation (ΔE) of magnesium ferrite was determined for pure and variously doped solids and the values obtained were 203, 126, 95 and 61 kJ mol−1 for pure mixed solids and those treated with 1.5, 3.0 and 6.0 mol% Li2O, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
气相燃烧合成纳米复合粒子的形态与结构   总被引:9,自引:0,他引:9       下载免费PDF全文
在气相燃烧反应器中成功地合成了TiO2-SiO2、TiO2-SnO2复合粒子。TiO2-SiO2复合粒子中TiO2以金红石型和锐钛型存在,SiO2以无定型的形式存在。复合结构为SiO2附着于TiO2的外部,在Ti∶Si的进料比较大时SiO2附着于TiO2的表面,Ti∶Si比值减小到1∶4时,SiO2包覆全部TiO2表面。包覆层的厚度大约为6~7nm。TiO2-SnO2的复合粒子中同时存在着三种晶体结构SnO2、金红石型和锐钛型的TiO2。在复合粒子的表面,TiO2和SnO2两种组分分布均匀。通过改变进料方式可以调整复合粒子的结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号