首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
采用低温燃烧合成技术制备了La1-xSrxCu0.9Fc0.1O2.5-δ(x=0.1-0.4)粉体。利用X-射线衍射(XRD)和差热分析(DTA)技术对粉体的性能进行了表征。XRD结果表明,经800℃焙烧的La0.9Sr0.1Cu0.9Fe0.1O2.5-δ粉体的对称性较低,未形成钙钛矿结构,其余La1-xSrxCu0.9Fe0.1O2.5-δ(x=0.2-0.4)粉体为四方钙钛矿结构,晶体结构参数之间满足关系式a=b≈2√2c。DTA结果证明La1-xSrxCu0.9Fe0.1O2.5-δ在800℃以下是热力学稳定的,不会发生分解反应。采用直流四电极法测试了La1-xSrxCu0.9Fe0.1O2.5-δ试样在100-800℃之间的电导率。试样的电导率^ln(σT)与1/T之间呈很好的线性关系,说明La1-xSrxCu0.9Fe0.1O2.5-δ在测试温度范围内服从小极化子导电机制。Sr掺杂量对试样的电导率和电导活化能有着明显的影响,当Sr掺杂量为0.3时,La1-xSrxCu0.9Fe0.1O2.5-δ的电导率最高,电导活化能最小。  相似文献   

2.
采用柠檬酸盐法结合高温烧结制备了(Pr,Sr)(Al,Co)O3-δ系列钙钛矿氧化物导电陶瓷。使用X射线衍射(XRD)、扫描电镜(SEM)和直流四线法等手段对样品的物相、微观结构和电性能进行了表征。结果表明:所制备的Pr0.9Sr0.1Al1-yCoyO3-δ(y=0.1~0.5)陶瓷均为单相菱方钙钛矿结构,在掺杂范围内其晶胞体积、相对密度和电导率都随Co掺杂量y的增加而增大,但电导率的增幅在逐步减小;所有陶瓷样品在空气中都是氧离子与电子空穴的混合导体,电导行为符合小极化子跳跃机制。对于Pr1-xSrxAl0.5Co0.5O3-δ(x=0.1~0.4)陶瓷,当x=0.2时样品有较明显的第二相(Pr,Sr)CoO3析出,说明Sr在该体系的固溶限在10~20at%之间,而且随着x的进一步增加,(Pr,Sr)CoO3增多并成为主相;在测量温度范围内,Pr1-xSrxAl0.5Co0.5O3-δ的电导率随x的增加大体呈现出一个先增大后减小的变化趋势,在x=0.3附近达到一个最大值,当x≥0.2时还可观察到明显的半导体-金属性转变,且转变温度随x的增加而逐渐降低。  相似文献   

3.
Ba0.4Sr0.6Ci1-xFexO3-δ系阴极材料的制备和表征   总被引:1,自引:0,他引:1  
采用甘氨酸.硝酸盐(GNP)法合成了中温固体氧化物燃料电池阴极材料Ba0.4Sr0.6Co1-xFexO3-δ=0.0~0.8)系列粉体.利用XRD和SEM对材料的结构和微观形貌进行分析,用直流四端子法测量了烧结陶瓷体在中温(450~800℃)范围内的电导率.结果表明.制备的样品为单一钙钛矿相,随着Fe含量增加,XRD衍射峰值向高角度方向稍有偏移.电导率随着温度及Fe含量的变化出现极大值,在x<0.2时,Ba0.4Sr0.6Co1-xFexO3-δ系列烧结体在 (450~800℃)XE的电导率,随Fe掺入量的增大而增大,x=0.2样品的电导率最高,800℃时达244.7 S·cm-1,远超过文献报道值,进一步增大Fe含量导电性能变差.  相似文献   

4.
采用高温固相反应法制备了质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)。结合XRD、SEM、EIS等技术对其物相、微观形貌、稳定性及电导率进行了研究。结果表明,在1600℃烧结5h制备的质子导体BaCe0.8-xNbxGd0.2O3-δ(0≤x≤0.45)均能保持主相为斜方晶的钙钛矿结构。Nb的加入可明显提高烧结样品的致密性及在CO2和水蒸气气氛下的稳定性。在湿润H2/Ar(0.4%,V/V)气氛中800℃下,x=0.1样品的电导率为5.73mS·cm-1,电导活化能为0.35eV,与x=0的样品相当。  相似文献   

5.
采用柠檬酸溶胶-凝胶法制备了固体电解质Ce0.9Er0.1-xPrxO1.95+δ(x=0.02~0.08),利用X射线粉末衍射(XRD)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱研究了样品的微观结构和电性能.XRD结果表明,800℃煅烧的所有样品均形成了单相立方萤石结构;Raman光谱结果表明,Ce0.9Er0.05Pr0.05O1.95+δ具有氧缺位的立方萤石结构;XPS分析表明,Ce0.9Er0.05Pr0.05O1.95+δ存在氧缺位,Pr3+离子和Pr4+离子共存;AFM观测结果表明,1300℃下烧结的样品比1400℃下烧结的样品致密;交流阻抗谱结果表明,Pr掺杂量x=0.05时,Ce0.9Er0.05Pr0.05O1.95+δ的电导率最高(σ600℃=1.34×10-2S/cm,Ea=0.90 e V),比未掺杂Pr的Ce0.9Er0.1O1.95(σ600℃=8.81×10-3S/cm,Ea=0.92 e V)提高了52%,说明在Ce0.9Er0.1O1.95中适量掺杂Pr可提高材料的电导率,降低活化能.  相似文献   

6.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

7.
利用高温固相反应法制备了高温质子导体La2-xCaxCe2O7-δ(0≤x≤0.2)。分别利用X射线衍射(XRD)、扫描电子显微镜(SEM)对试样的相组成、微观形貌进行了表征。并对试样在水蒸气和CO2气氛中的化学稳定性进行了测试。研究了不同掺杂量和不同测试气氛对La2-xCaxCe2O7-δ电性能的影响。实验结果表明:1 500℃烧结的试样均形成萤石型结构;试样在CO2和水蒸气气氛中表现出良好的化学稳定性。试样在湿润氢气气氛下的电导率明显高于干燥空气气氛,x=0.1的试样在湿润氢气气氛中具有最高的电导率,850℃时达到3.16×10-2S.cm-1,电导活化能为84.93 kJ.mol-1。  相似文献   

8.
采用改进的溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(PSCF)(z=0,0.02,0.05,0.1)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)对其相结构与形貌进行了分析,结果表明:900℃以上焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(z=0,0.02,0.05,0.1)为单一的钙钛矿结构。1000℃烧结的样品内粒子分布比较均匀,且颗粒内部存在一定程度的空隙,并与电解质附着情况良好。用直流四电极法测试阴极体系样品在400~750℃的电导率,发现各试样混合离子电子电导率均高于786 S.cm-1,能够满足固体氧化物燃料电池对阴极电导率的要求。用交流阻抗法测定PSCF-Ce0.8Sm0.2O1.9体系样品的阻抗谱,得到1000℃烧结的阴极体系对称电池在测试温度为750℃z=0,z=0.02,z=0.05时的极化电阻分别为0.041,0.040,0.034Ω.cm-2。  相似文献   

9.
王亚楠  周和平 《无机化学学报》2008,24(10):1558-1563
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT.SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0-0.5)和Gd.0.8Sr0.2Co1-yFeyO3-δ(y=0-1),所合成的初始粉体在800℃下煅烧12 h后均形成了钙钛矿结构的单相固溶体.研究发现,Gd1-xSrxCoO3-δ(GSC)的电导率在600℃时达到了559 S·cm-1,由Ce0.8Cd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm2和0.064Ω·cm2,活化能仅为87.8 kJ·mol-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3 离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Cd0.8Sr0.2CoO3-δ/GDC复合阴极材料.  相似文献   

10.
采用Pechini法合成了Sr(Ce_(0.6)Zr_(0.4))_(1-x)Y_xO_3(SCZY,x=0.10, 0.15, 0.20)电解质粉体,将所制粉体模压成型后在1450℃煅烧10 h得到固体电解质。采用XRD研究掺杂量和煅烧温度对粉体相纯度的影响,通过SEM观察粉体和电解质的微观结构,用电化学阻抗谱法测量电解质的电性能。结果表明:1000℃煅烧后的SCZY粉体(x=0.15)为纯的钙钛矿相,粉体晶粒尺寸随煅烧温度升高而明显长大。高速球磨能有效改善粉体的团聚情况,得到亚微米粉体,由此压制的质子电解质更加致密,没有微孔等缺陷, 800℃的电导率为7.94×10~(-3) S·cm~(-1)。  相似文献   

11.
利用溶胶-凝胶方法在800℃灼烧10h后,合成了固溶体Ce1-xEuxO2-δ(x=0.05~0.5),晶粒平均尺寸为60nm左右,XRD分析表明固溶体的结构为单相立方萤石结构。Mssbauer谱测试表明固溶体Ce1-xEuxO2-δ中Eu离子价态为+3价,同质异能移IS值随掺杂量x增加而增大。Eu3+的四极劈裂QS值小于零,表明Eu3+周围的晶体场是非对称的,QS的绝对值随掺杂量x增加而增大,说明随掺杂量x增加,晶体场对称性越差。阻抗谱测试表明通过掺杂使固溶体Ce1-xEuxO2-δ的导电率得到很大提高,电导率在x=0.2时达到最大值σ800℃=1.28×10-2S·cm-1,电导活化能达到最小值为Ea=0.72eV。  相似文献   

12.
采用溶胶-凝胶法合成(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00、0.02、0.05、0.10)氧化物,通过X射线衍射(XRD)、场发射扫描电镜(FESEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明:所有样品均为单一萤石立方结构;少量MoO3的加入提高了材料的致密性,降低了材料的总电阻、晶界电阻和晶界电阻在总电阻中所占比例,提高了材料的电导率.1200 ℃烧结样品24 h,测试温度700℃时,(Ce0.9Nd0.1)1-xMoxO2-δ(x=O.00)总电导率和晶界电导率分别为0.05和O.19 S·m-1,掺Mo材料(Ce0.9Nd0.1)1-xMoxO2(x=0.02)的总电导率和晶界电导率分别为2.42和3.96 S·m-1.  相似文献   

13.
利用溶胶-凝胶方法在800 ℃灼烧10 h后, 合成了固溶体Ce1-xEuxO2-δ(x=0.05~0.5), 晶粒平均尺寸为60 nm左右, XRD分析表明固溶体的结构为单相立方萤石结构. M(o)ssbauer谱测试表明固溶体Ce1-xEuxO2-δ中Eu离子价态为+3价, 同质异能移IS值随掺杂量x增加而增大. Eu3+的四极劈裂QS值小于零, 表明Eu3+周围的晶体场是非对称的, QS的绝对值随掺杂量x增加而增大, 说明随掺杂量x增加, 晶体场对称性越差. 阻抗谱测试表明通过掺杂使固溶体Ce1-xEuxO2-δ的导电率得到很大提高, 电导率在x=0.2时达到最大值σ800 ℃=1.28×10-2 S·cm-1, 电导活化能达到最小值为Ea=0.72 eV.  相似文献   

14.
利用高温固相反应法制备了Sr掺杂LaNbO4质子导体La1-xSrxNbO4-σ(0≤x≤0.02),并且对其性能进行了表征。XRD分析表明,所有的样品具有单斜结构,晶胞体积随Sr掺杂量的增加而增大;La1-xSrxNbO4-σ样品在沸水中和二氧化碳气氛中具有很好的化学稳定性。SEM分析表明,La1-x Srx NbO4-σ粉体经1 500℃烧结8 h后均得到致密的、晶粒均匀的样品;Sr的掺杂抑制了陶瓷体裂缝的产生和晶粒的过度增长;随Sr的掺杂量增加,晶粒变小。交流阻抗谱分析表明,Sr掺杂改变了LaNbO4的电导率,其中样品La0.995Sr0.005NbO4-σ具有最高的电导率;样品在25℃水汽饱和的5%H2-Ar气氛下的电导率明显高于干燥空气气氛,在800℃时,La0.995Sr0.005NbO4-σ电导率达到0.003 S·cm-1,电导活化能为0.44 eV。  相似文献   

15.
PrGa1-xMgxO3作为燃料电池固体电解质的研究   总被引:6,自引:0,他引:6  
用固相反应法合成了具有正交钙钛矿结构的PrGa1-xMgxO3(x=0,0.05,0.10,0.15,0.20,0.25)通过掺杂,样品的电导率显著提高,活化能降低,所有样品均以离子导电为主,其中PrGa0.9Mg0.1O3的氧离子电导率最高,在800℃达到0.05S/cm,PrGa0.8Mg0.2O3的导电活化能量低,为24.19kJ/mol。随着温度的升高,样品的离子迁移数增加,PrGa0.9Mg0.1O3作为电解质的燃料电池在940℃短路电流密度为0.45A/cm^2,最大功率密度达0131W/cm^2,镁掺杂的PrGaO3是一种性能优良的固体电解质。  相似文献   

16.
在5%H_2+95%N_2(V/V)还原气氛中1 500℃烧结4 h制备La_(0.1)Bi_xSr_(0.9-x)TiO_3(x=0、0.05、0.075、0.1)陶瓷,并对其组成、显微结构和热电性能进行研究。结果表明:掺Bi试样的主晶相均为Sr Ti O3,当Bi掺杂量大于0.075时,样品中出现少量Bi_2O_3杂相;掺Bi试样的晶粒发育完全,形状规则,结合紧密,显示出Bi_2O_3良好的助烧效果。另外,Bi元素掺入使La_(0.1)Sr_(0.9)TiO_3陶瓷的电导率和Seebeck系数绝对值显著增加,说明Bi元素的掺入可有效提高材料的载流子浓度和载流子迁移率。其中,x=0.075时试样的功率因子最大,在400℃时为692μW·m~(-1)·K~(-2)。虽然其热导率比未掺杂Bi试样有所提高,x=0.075时试样的ZT值在500℃时仍可达0.172,比未掺杂Bi试样提高了130%。  相似文献   

17.
采用有机凝胶法结合固相烧结技术制备了Sm_0.9St_0.1Al_0.5Mn_0.5O_(3-δ)(SSAM9 155)新犁导电陶瓷.通过TG/DTA,FTIR, XRD,SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制.结果表明,凝胶前驱体在900℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体;高温烧结制得的SSAM9155陶瓷的电导率取决于P型电导,电导率随温度的升高而增大,导电行为符合P型小极化子跳跃机制;随烧结温度的升高或保温时间的延长,SSAM9155陶瓷的电导率和相对密度都先增大后减小,1600℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%),该样品在空气和氢气气氛中850℃时的电导率分别为8.21和1.26 S·cm~(-1),表观活化能分别为0.265和0.465 eV.具有较高电导率的Sr,Mn掺杂的SmAlO_3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

18.
采用柠檬酸-溶胶凝胶法制得钙钛矿型复合氧化物La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),La0.8Sr0.2Mn0.6Cu0.4O3,La0.8Ce0.1Sr0.1Mn0.6 Cu0.4 O3,并采用X射线衍射(XRD)、扫描电镜(SEM)、比表面积(BET)、X射线光电子能谱(XPS)对其进行表征,测试了复合氧化物对CO+NO的催化活性。结果表明:La0.8Ce0.1Sr0.1Mn0.6Cu0.4O3催化活性最好,150℃时CO转化率91.8%,300℃时NO转化率100%;对于La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),比表面积和颗粒的大小及分散度是影响催化活性的主要因素;对于La0.8Ce0.2Mn0.6Cu0.4O3,La0.8 Sr0.2 Mn0.6 Cu0.4 O3,La0.8 Ce0.1 Sr0.1 Mn0.6 Cu0.4 O3,催化剂的组成是影响催化活性的关键因素。  相似文献   

19.
采用尿素-硝酸盐法制备了Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.5)阴极材料.用TG-DSC,SEM,XRD和热膨胀仪对材料的形成过程、晶体结构、烧结体的微观结构及热膨胀性能进行了表征.用直流四端子法测试材料在500~800℃范围内的电导率.结果表明,制备样品的主晶相为正交钙钛矿结构,体系含有杂相;电导率随温度和Cu含量的变化关系表现为,x≤0.2时的样品随温度升高电导率降低,x≥0.3时随温度升高电导率增大,组成为x=0.2的样品电导率最高,500℃达到703.1 S·cm-1.材料的热膨胀系数随掺杂的Cu含量增加而降低.  相似文献   

20.
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT-SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0~0.5)和Gd0.8Sr0.2Co1-yFeyO3-δ(y=0~1),所合成的初始粉体在800℃下煅烧12h后均形成了钙钛矿结构的单相固溶体。研究发现,Gd0.8Sr0.2CoO3-δ(GSC)的电导率在600℃时达到了559S&#183;cm^-1,由Ce0.8Gd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω&#183;cm^2和0.064Ω&#183;cm^2,活化能仅为87.8kJ&#183;mol^-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3+离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Gd0.8Sr0.2CoO3-δ/GDC复合阴极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号