首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
一、引 言 随着激光、强磁场的发展,利用晶体的磁光效应研究其能带结构,已经成为重要的手段之一.为了进行窄禁带半导体磁光效应的研究,我们设计和研制了场强为46kG的亥姆霍兹型超导磁体和与之配套的光学杜瓦瓶,其结构和性能如下. 二、磁体部分 亥姆霍兹型线圈如图1,可视为图2(a  相似文献   

2.
由我们研制的几种杜瓦瓶表明,将多层绝热结构应用于低温液氦实验杜瓦瓶,代替液氮保护,可以得到良好的效果. 我们研制的口径为φ5120mm、φ150mm、φ200mm,内胆容积分别为10升、27升、38升,用铝箔和玻璃纤维纸作多层绝热结构的液氦实验杜瓦瓶液氦平均蒸发率分别为100毫升/小时、120毫升/小时、180毫升/小时,适于低温实验室推广使用. 另一个口径为φ120mm,内胆容积为10升,用喷铝涤纶薄膜和两个铜屏作多层绝热结构的液氦实验杜瓦瓶已使用六年,液氦蒸发率小于200毫升/小时.在该杜瓦瓶夹层中放有八个铜-康铜热偶温度计,提供了有关屏温分布的参考数据.  相似文献   

3.
该装置由11T超导强磁体;ф_内=30mm室温孔径的金属内杜瓦瓶;80升液氦金属外杜瓦瓶;JWL-150A超导磁体电源以及防辐射屏、吊杆、引线等五部分构成。金属内杜瓦瓶直接插在磁体内径中,其实验空间与外界相通,它可在4.2—400K之间变温,在0—10T之间改变磁场强度,也可随时更换测试样品。金属外杜瓦瓶采用气冷多屏绝热的结构。它自身的蒸发率为0.21升/小时。在内杜瓦瓶温度~70K、场强为10T时,液氦蒸发率为1.3—1.6升/小时之间。  相似文献   

4.
一、引 言 在液氦温度下做铁磁共振测量一般有三种方法:第一种是将实验样品连同微波谐振腔及传输线一起浸置于液氦低温容器中,因此外加磁场磁极间隙随杜瓦瓶外尺寸而大大增加,这样就要求比室温铁磁共振测量所用的电磁铁和直流电源要大得多.第二种是吹气方法,它可以避免以上的问题,但这两种均有液氦耗费大、低温变温和实验操作麻烦、测试设备较为庞大复杂等缺点.第三种方法是本文所要介绍的,将液氦杜瓦瓶下端做成细管。细管部分插入谐振腔中,用此方法多做为液氦温度下定温实验[1,5]。由于容器小便于实验,我们设计了用电加热的办法连续改变温…  相似文献   

5.
本文介绍了一种小型金属氦杜瓦瓶电磁屏蔽性能的初步实验结果。这种小型杜瓦可贮存液氦4升,维持时间约24小时.它具有电屏蔽作用,具有较好的抗电干扰能力.对50Hz和50Hz以上频率的交流磁场亦有一定的屏蔽效果.它比较适用于约瑟夫逊器件及小型超导器件的液氦实验.  相似文献   

6.
冉启泽 《物理学报》1976,25(3):270-270
简单可靠的氦液面计将给低温工作带来很多方便。下面介绍的超导液面计制作简单, 精度为1mm。经多次低温实验证明,无论在向杜瓦瓶输液过程, 或在液氦实验中都能真实地指示杜瓦瓶内液氦面的位置。 超导液面计的原理如图1所示。如果超导线s处于液氦中, 其电阻为零,则指示灯L点亮;当超导线离开液面时,由于加热器  相似文献   

7.
为了维持较低的液氦蒸发率,对液氦杜瓦的整体结构设计及漏热要求极高。本文建立了以蒸发冷氦气作为冷屏冷源的杜瓦的结构强度设计以及绝热系统设计方法,利用三维软件建模、仿真软件进行热传导、热固耦合仿真分析,对液氦杜瓦的结构强度、漏热进行了系统分析,实现了容积为4 000 L时漏热为1.37 W、日蒸发率为1.15%气冷屏结构的液氦杜瓦,为蒸发氦气为冷屏的大型液氦杜瓦提供了设计思路。  相似文献   

8.
近年来,随着超导体在大型装置中越来越多的应用,以及对于超导体”退化”和“锻炼”问题的深入研究,广泛开展了超导体应力效应的研究.我们建立了一个简单的装置,来研究应力对铌钛(50 wt%)单芯线临界电流的影响. 实验装置简图见图1.实验杜瓦4为在存有液氦情况下可更换样品的玻璃杜瓦.背  相似文献   

9.
文中较详细地介绍了超导磁体用金属液氦广口杜瓦的结构、制作工艺、绝热计算。该杜瓦外径Φ40 0 ,总高 2 5 0 0 ,内胆Φ 3 0 5 ,深 1 80 0 ;绝热方式采用多屏多层超级绝热结构 ,液氦日蒸发量 7.5升。  相似文献   

10.
根据高μ子源超导俘获线圈整体测试系统的要求,设计了μ子源超导俘获线圈测试杜瓦系统.包含液氦杜瓦、真空杜瓦及绝热冷屏,采用Solidworks软件对测试杜瓦系统进行3D建模.通过对绝热冷屏统进行了详细的传热学计算,绝热冷屏的可以满足μ子源超导俘获线圈测试过程的漏热需求;根据μ子源超导俘获线圈测试实际工况,对真空杜瓦和液氦杜瓦进行了Ansys有限元软件分析与校核,得到杜瓦详细的应力及变形结果,分析表明,测试杜瓦的设计较为合理,可以作为工程设计的理论计算依据  相似文献   

11.
本文报道由液氦(~4Hc)获得1K级低温的减压降温装置技术及其热分析.实验结果已达到1.17 K.测量了实验杜瓦的轴向温度分布.已用于超流氦温度下复合材料导热系数的实验研究和氦λ点温度以下温度计的标定.  相似文献   

12.
北京正负电子对撞机重大改造工程(简称BEPCⅡ)采用了超导射频技术,超导腔设备在与低温恒温器总装之前,必须进行液氦温度下垂直位置的性能测试.测试杜瓦的绝热性能对超导腔的垂直测试性能产生直接影响,准确测算测试杜瓦的漏热量对垂直测试方案的制定、减少液氦消耗量具有重要的指导意义.对测试杜瓦的主要漏热部分进行了计算,同时以液氮...  相似文献   

13.
选择304LN 不锈钢作为冷屏的制作材料,将杜瓦冷屏分为16 个扇区,每个扇区由20 个子部分组成,在每一个子部分上布置相应的冷却管。选择液氦作为冷却剂。为检验杜瓦冷屏结构是否符合设计要求,分析了杜瓦冷屏的传热方式以及冷却原理,利用FLUENT 软件对设计的冷屏结构进行了热分析,得到了杜瓦冷屏面板的温度分布情况以及冷却管道进出口压力差。结果表明,杜瓦冷屏面板温度和冷却管道进出口压力差在合理范围内,验证了冷却管道布局的合理性,为后续杜瓦冷屏的设计提供了重要参考。  相似文献   

14.
制冷机冷却型超导磁体杜瓦的研制   总被引:1,自引:1,他引:0  
介绍了带制冷机冷却的超导磁体系统杜瓦的设计、制作及实验结果分析。杜瓦采用 4 0 K、10 K双制冷屏结构 ,其室温磁场孔径为 75 mm,长 4 15 m m。试验结果为 :液氦蒸发率为 0 .6 9升 /天 (在 2 0天连续试验期内 ) ,优于合同规定的指标 (2 .4升 /天 )。双制冷屏由一台双级 G- M制冷机冷却 ,工作时一级冷屏温度为 35 K,二级冷屏温度为 7.0 K。磁体系统的磁场强度为 3T,满足了用户的使用要求  相似文献   

15.
微型杜瓦瓶及致冷器在红外系统中的应用   总被引:5,自引:0,他引:5  
于小兵 《应用光学》2000,21(Z1):38-41
红外系统应灵活选择不同类型的微型杜瓦瓶和致冷器(机).有些红外制导导弹由于发射快,工作时间短,干脆不要杜瓦瓶还有些发达国家的快速起动红外系统选择全金属型微杜瓦瓶配快速起动节流致冷器.另外,坦克热瞄具、飞机前视红外系统、军用手持热像仪等都是根据需要而选择不同的致冷系统.论述微型杜瓦瓶和致冷器在红外系统中的应用,并给出应用实例.  相似文献   

16.
介绍了低温超导磁体杜瓦装置的结构设计和传热分析。为了获得有效的超导磁体运行的低温环境,研制了一套采用真空多层绝热、铜辐射冷屏、蛇形排气管结构形式的绝热系统,省去了传统的在内杜瓦外面添加液氮屏的结构,简化了工艺结构,操作方便,绝热效果良好。通过传热理论计算表明,液氦的损耗量小于技术要求的0.9 L/h指标,能够保证超导磁体系统能够在一定的低温环境下长时间的运行。  相似文献   

17.
分析了不同液氦杜瓦结构,指出多屏多层的杜瓦的优缺点。通过对多屏多层绝热中不同传热方式的逐个分析,建立了一个理论传热模型。依照模型采用数值分析的方式,对多层层数为100层时的传热进行了分析,获得传导冷屏分布方式对传热流密度的影响曲线,并指出多层多屏分布的优化应同时考虑空间和温度两个因素。  相似文献   

18.
本文介绍了我们研制的新型轻便自动输液装置.它不需要电能和压缩气体能,仅利用虹吸再气化原理,靠低温液体气化后体积膨胀数百倍而产生的压力来输送液体.装置全重2.5kg结构简单轻巧,主要工作部分为三个气动单向阀和一个气化室系统.该装置已成功地用于低温物理,低温电子学和红外技术的实验中,小规模地从杜瓦容器向实验装置输送液氮、液氦和液空.一次驱动,便能自动输送5—10升液体;根据需要,还可循环驱动以输送更多的液体.  相似文献   

19.
Y-Ba-Cu-O系列高Tc氧化物超导材科的出现,使超导研究成为当前最热门的课题.随着Tc超过液氮温度,不但使该类超导材料的应用成为可能,而且使缺少低温液氦设备的单位也可以加入到超导研究的行列中.本文介绍一套十分简易的装置,可以用来快速测量超导材料的R-T 曲线,并有较满意的精确度和准确度. 测量装置如图1(a)所示.在普通的暖水瓶或杜瓦瓶中装入液氮作为低温装置.图1中1为紫铜片作成的传热片,其尺寸如图1(b)所示,2为样品台.样品台的材料采用六方氮化硼(hBN)烧结体,它是一种高温高压实验中常用的传热介质,其特点是既有好的传热性能,又兼有…  相似文献   

20.
本文介绍了一种不抽真空的实验室使用的小型液氦输液管的基本原理和制作工艺.使用效果表明,这样的输液管不仅性能不比通常杜瓦管差,而且制作简单,不须定期保养.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号