首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由我们研制的几种杜瓦瓶表明,将多层绝热结构应用于低温液氦实验杜瓦瓶,代替液氮保护,可以得到良好的效果. 我们研制的口径为φ5120mm、φ150mm、φ200mm,内胆容积分别为10升、27升、38升,用铝箔和玻璃纤维纸作多层绝热结构的液氦实验杜瓦瓶液氦平均蒸发率分别为100毫升/小时、120毫升/小时、180毫升/小时,适于低温实验室推广使用. 另一个口径为φ120mm,内胆容积为10升,用喷铝涤纶薄膜和两个铜屏作多层绝热结构的液氦实验杜瓦瓶已使用六年,液氦蒸发率小于200毫升/小时.在该杜瓦瓶夹层中放有八个铜-康铜热偶温度计,提供了有关屏温分布的参考数据.  相似文献   

2.
制冷机冷却型超导磁体杜瓦的研制   总被引:1,自引:1,他引:0  
介绍了带制冷机冷却的超导磁体系统杜瓦的设计、制作及实验结果分析。杜瓦采用 4 0 K、10 K双制冷屏结构 ,其室温磁场孔径为 75 mm,长 4 15 m m。试验结果为 :液氦蒸发率为 0 .6 9升 /天 (在 2 0天连续试验期内 ) ,优于合同规定的指标 (2 .4升 /天 )。双制冷屏由一台双级 G- M制冷机冷却 ,工作时一级冷屏温度为 35 K,二级冷屏温度为 7.0 K。磁体系统的磁场强度为 3T,满足了用户的使用要求  相似文献   

3.
本文介绍了一种小型金属氦杜瓦瓶电磁屏蔽性能的初步实验结果。这种小型杜瓦可贮存液氦4升,维持时间约24小时.它具有电屏蔽作用,具有较好的抗电干扰能力.对50Hz和50Hz以上频率的交流磁场亦有一定的屏蔽效果.它比较适用于约瑟夫逊器件及小型超导器件的液氦实验.  相似文献   

4.
为了维持较低的液氦蒸发率,对液氦杜瓦的整体结构设计及漏热要求极高。本文建立了以蒸发冷氦气作为冷屏冷源的杜瓦的结构强度设计以及绝热系统设计方法,利用三维软件建模、仿真软件进行热传导、热固耦合仿真分析,对液氦杜瓦的结构强度、漏热进行了系统分析,实现了容积为4 000 L时漏热为1.37 W、日蒸发率为1.15%气冷屏结构的液氦杜瓦,为蒸发氦气为冷屏的大型液氦杜瓦提供了设计思路。  相似文献   

5.
介绍了零蒸发率低温超导磁体系统的设计与研制。整个系统主要包含超导磁体与低温冷却两部分。超导磁体使用NbTi线绕制,采用主线圈加补偿线圈的结构,中心磁场强度最大可达5.7T。磁体通过4.2K级G-M制冷机冷却,同时每天可生产约5L液氦。系统自常温开机运行,约45小时后开始生产液氦,液氦液面高于超导磁体2/3时,停止氦气供给。磁体加电闭环运行后,系统可实现静态零蒸发率。  相似文献   

6.
严善仓  李炜 《低温与超导》2006,34(2):129-132
介绍了一套制冷机冷却型小型超导强磁场系统。超导磁体线圈用铌钛超导线绕制,室温孔直径为75mm,磁场中心Φ25mm×250mm区域内最高场强达到3.64T,磁场不均匀性小于3%。在2.62T场强下连续闭环运行了20天,电流衰减率近似为零。采用4K级低温制冷机冷却防辐射冷屏,液氦蒸发率小于0.03升/小时,系统一次可注入液氦50升,补液周期大于60天。  相似文献   

7.
文中较详细地介绍了超导磁体用金属液氦广口杜瓦的结构、制作工艺、绝热计算。该杜瓦外径Φ40 0 ,总高 2 5 0 0 ,内胆Φ 3 0 5 ,深 1 80 0 ;绝热方式采用多屏多层超级绝热结构 ,液氦日蒸发量 7.5升。  相似文献   

8.
零蒸发超导磁体系统利用制冷机作为冷源,常温氦气经预冷后直接液化为液氦。同时零蒸发超导磁体系统将冷却系统蒸发的饱和氦气或低温氦气冷凝再液化。整个试验过程无需加注液氦和补充液氦,实现液氦零损耗。其中氦气液化冷凝器是低温磁体杜瓦部分的核心部件,它的设计成败将直接影响系统能否实现液氦的零蒸发与零消耗。  相似文献   

9.
成功研制了6T NbTi 传导冷却超导磁体系统,制冷机为二级GM-制冷机.磁体冷却到4K需用74小时左右.目前磁体系统已分别完成了115A(6T),45小时和95A,264小时的无间断运行实验.该磁体所用杜瓦容器外径为742mm,高为558mm,室温孔径为100mm.磁体系统可在支架上以0度,45度,90度旋转.  相似文献   

10.
EBIT装置低温系统的设计与实验研究   总被引:1,自引:0,他引:1  
介绍了 EBIT装置低温系统的设计与制作 ,并对实验结果进行了分析。 EBIT装置低温系统采用双冷屏结构 ,通过二级 G- M制冷机冷却冷屏来降低液氦的蒸发量。试验结果 :系统灌注液氦平衡后 ,连续 16个小时液氦的平均蒸发量为1.1升 /小时 ,磁体系统磁场强度大于 5 T,基本满足用户的使用要求。  相似文献   

11.
BEPC Ⅱ氦低温系统的初步设计   总被引:1,自引:0,他引:1  
低温超导技术将应用于第二代北京正负电子对撞机(BEPC Ⅱ).文中所设计的大型氦低温系统将为第二代北京正负电子对撞机的三个磁体:超导螺线管磁体、插入四极铁磁体和高频超导腔磁体提供4.5K下800W的冷量和60.0L/h的液氦产量.由于每个用户都有其特定的工作要求,该系统为每个用户配置一个控制杜瓦,以满足磁体的工作要求.  相似文献   

12.
低温超导技术将应用于第二代北京正负电子对撞机 (BEPC II)。文中所设计的大型氦低温系统将为第二代北京正负电子对撞机的三个磁体 :超导螺线管磁体、插入四极铁磁体和高频超导腔磁体提供 4 .5 K下 80 0 W的冷量和 6 0 .0 L/ h的液氦产量。由于每个用户都有其特定的工作要求 ,该系统为每个用户配置一个控制杜瓦 ,以满足磁体的工作要求。  相似文献   

13.
2T高温超导Bi-2223带材磁体   总被引:1,自引:0,他引:1  
通过带材Ic及其弯曲性能测试,进行磁体设计,采用先处理后绕制(R&W)的工艺,制得中心磁场达2T的高温超导Bi-2223带材饼状线圈磁体.该磁体在液氮(77K)下通电流22.4A,中心磁场达0.25T;在液氦下可通电流170A,中心磁场达2.0T(4.2K),为液氮下的8倍,表明所采用的工艺,对制作中小规模高温超导Bi-2223带材饼状线圈磁体,是合适的.  相似文献   

14.
冉启泽 《物理学报》1976,25(3):270-270
简单可靠的氦液面计将给低温工作带来很多方便。下面介绍的超导液面计制作简单, 精度为1mm。经多次低温实验证明,无论在向杜瓦瓶输液过程, 或在液氦实验中都能真实地指示杜瓦瓶内液氦面的位置。 超导液面计的原理如图1所示。如果超导线s处于液氦中, 其电阻为零,则指示灯L点亮;当超导线离开液面时,由于加热器  相似文献   

15.
强流重离子加速器装置(HIAF)二极磁铁样机要在流量、温度均可调节的低温环境中进行试验,研制满足试验要求的阀箱是保证低温真空试验环境的关键。设计的阀箱系统在满足二极磁铁样机降温的同时还具备实现磁体温度在4.3K—8K的范围内调节、对高温电流引线进行冷却的功能。液氦管路系统自身带有一定压力,阀箱内部配有一台液氦换热器用于满足试验温度要求。通过理论计算得出,该阀箱液氦过冷换热器需盘管20m,80K—4K总漏热为6.105W,满足设计要求;通过有限元分析得出,阀箱外壳最大变形在上法兰中心处,约为0.533mm,外壳应力也满足强度要求,冷屏温度主要分布于77.3K—77.8K之间,整体温度均匀性良好。  相似文献   

16.
35kV/90MVA高温超导限流器的低温系统是一个开放式的液氮制冷系统,包括一个环形不锈钢杜瓦、真空绝热管、压力及温度传感器、低温阀门以及监控系统.高温超导磁体放置在杜瓦中;监控系统检测杜瓦内液氮的液面,并控制往杜瓦内进行补液.杜瓦内蒸发的氮气通过真空绝热管道直接排放到大气中.分别对不同工况下的液氮蒸发量进行了测量.进...  相似文献   

17.
双孔径校正超导磁体是大型强子对撞机亮度升级项目的重要组成部分,在4.2 K低温环境下对该磁体进行励磁及性能测试。为避免磁体在降温过程中产生较大的热应力,要求降温过程中磁体各点最大温差不超过30 K。同时,为节省液氦与降温梯度均匀,特设计了一个铜筒体结构用于该磁体的降温和测试,降温过程分为液氮换热降温和液氦直冷降温两个阶段。实验测试结果表明静态液氦消耗速率为55.571 L/h,电流为407 A失超时液氦总消耗52 L、静态消耗16.116 L、内部泄能消耗22.08 L,即液氦消耗不仅包括测试系统的静态消耗、泄能消耗,还存在液氦溢出损耗。  相似文献   

18.
介绍了EBIT(Electron Beam Ion Trap,电子束离子阱)装置零蒸发低温超导磁体系统的研制过程与超导磁体的性能测试结果。该系统中超导磁体由一对上下布置的分离线圈组成,中心最大磁场强度可达4.5T,在中心轴线上±10mm内磁场均匀度优于2×10-4,磁场衰减系数在8h小于1×10-4;同时其低温杜瓦系统采用双冷屏结构,并通过二级G-M制冷机冷却冷屏来降低液氦的蒸发量。超导磁体的性能测试结果表明满足用户基本要求。  相似文献   

19.
《低温与超导》2017,(1):42-45
特殊工况下的高温超导磁体的设计要求是在30分钟内快速降温到63K以下,并且保持磁体在工作温度下持续工作至少8个小时。提出了采用液氮浸泡磁体,并通过液氦预冷和减压对液氮进行冷却,使液氮快速降温到63K以下形成固态氮的冷却方式。计算了磁体运行时的总热负荷,对比全部利用固氮维持磁体运行、部分利用固氮作为储冷介质同时利用斯特林制冷机制冷维持两种维持磁体低温运行方案,最终确定第二种冷却方案。  相似文献   

20.
EAST全超导托克马克聚变实验装置由16个D形环向场线圈和12个圆形极向场线圈组成,大半径1.7m,当环形场线圈励磁14.3kA时,中心场3.5T;±14.5kA极向场线圈可提供10Vs磁通量变化.连接这些超导磁体与13台独立电源和一台制冷机之间的低温和超导部件组成大型供电供冷馈线,在EAST装置外部的外馈线包括:两组超导母线;13对电流引线及其杜瓦;一个大的低温分配恒温器,内装有40多个低温控制阀,4.4K液氦槽,3.8K过冷槽,78K液氮槽和4台超临界氦循环泵;五条低温传输线.本文介绍外馈线的设计、安装和运行情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号