首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the entanglement swapping of continuous state and the two-mode squeezed vacuum which is exposed variable using the pair coherent state as the input in a phase decoherence environment as the quantum channel. By adopting the log-negativity as the measure of entanglement, we analyze how entanglement of the two initial states and the phase decoherence environment affect the entanglement swapping quality.  相似文献   

2.
Utilizing the concurrence and the quantum discord as the measure method, in this paper we compare and investigate the dynamic evolution features of quantum correlations of coupled qubits in non-Markovian process. We focus attention on decoherence effect influences the stability of quantum correlations. The investigation results show that because of the decoherence influence between the system and environment, the concurrence always evolves with time in oscillation form in the way of deaths and survivals, however, the quantum discord time evolution does not appear the deaths and survivals. The quantum discord survives obviously longer than concurrence, which indicates that quantum discord has a stronger ability to resist decoherence than entanglement. Through regulating and controlling the purity and entanglement of the initial quantum state, we can effectively suppress the decay of the quantum correlations, which is advantaged to complete the quantum information processing.  相似文献   

3.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

4.
Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.  相似文献   

5.
We study the dynamics of quantum discord of two-qubit system in a quantum spin environment at finite temperature in the thermodynamics limit. Special attention is paid to the difference between the entanglement and quantum discord when considering the influences of the environment temperature and the initial system states. We show that in the same range of the physical parameters, when the system states behave no entanglement or entanglement sudden death, the quantum discord keeps nonzero. So the quantum discord is more robust than entanglement under this decoherence environment. Furthermore, we also illustrate that we can tune the parameters related to the system and the environment to suppress the decay of quantum discord.  相似文献   

6.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

7.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

8.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

9.

Dynamical behaviour of Quantum Entanglement (QE) and atomic Quantum Fisher Information (AQFI) for a moving N-level atomic system is studied in a thermal environment. Time evolution of state vector of the entire system interacting with thermal field is calculated numerically in the presence of intrinsic decoherence. It is observed that intrinsic decoherence and thermal environment play dominant role during the time evolution of the quantum system. AQFI and entanglement show an opposite behaviour during its time evolution in the presence of thermal environment. AQFI is observed to be more prone to intrinsic decoherence as compared to the entanglement in a thermal environment. AQFI is found to be more prone to intrinsic decoherence as compared to the QE in a thermal environment. QE is found decaying when the parameter of intrinsic decoherence is increased in the absence of atomic motion. The damping behaviour of QE is observed for longer time-scales. The periodic response of entanglement due to atomic motion becomes moderate under the influence of these environments. The intrinsic decoherence and thermal environment are found to suppress the nonclassical effects of the quantum system. QE and AQFI saturate to a lower level for larger time-scales under the influence of these environments. Furthermore, the dynamics of AQFI and von Neumann entropy (VNE) changes remarkably by changing the mean number of photons.

  相似文献   

10.
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.  相似文献   

11.
本文研究了双轴分子磁体在耗散环境中的相干量子隧穿,作为环境的声子库抑制了相干量子隧穿,从而引起分子磁体中薛定谔猫态的退相干. 而环境内部声子之间的相互作用会导致分子磁体与热库之间退耦合,于是对退相干有一定的抑制作用. 在绝热近似和非绝热近似下,借助于约化密度矩阵计算了超Ohmo耗散中分子磁体与环境之间的纠缠度,当纠缠达到最大时,相干隧穿被完全抑制.  相似文献   

12.
Dynamic evolution of entanglement is studied for coupling two-qubit system in non-Markov environment in terms of concurrence. We find that the degree of entanglement depends on the initial quantum state of the system and the interaction between the two-qubit system and the environment. When the interaction between the qubits and the environment is completely symmetric, especially, the environment has no effect on the entanglement, where the decoherence is entirely resulted from the interaction between qubits. By controlling the coupling way of the interaction, thus, one may avoid the entanglement sudden death (ESD).  相似文献   

13.
Decomposition of a composite system C into different subsystems, A+B or D+ε, may help in avoiding decoherence. For example, the environment-induced decoherence for an A+B system need not destroy entanglement present in the D+ε system (A+B=C=D+ε). This new approach opens some questions also in the foundations of the quantum computation theory that might eventually lead to a new model of quantum computation.  相似文献   

14.
石甲栋  吴韬  宋学科  叶柳 《中国物理 B》2014,23(2):20310-020310
In this paper,we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment,and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames.Through the calculations and analyses,it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel,while the system is under the phase damping and flip channels.This protection protocol cannot prevent entanglement but will accelerate the death of entanglement.In addition,if the system is in the noninertial reference frame,then the effect of weak measurement will be weakened for the amplitude damping channel.Nevertheless,for other decoherence channels,the Unruh effect does not affect the quantum weak measurement,the only exception is that the maximum value of entanglement is reduced to√2/2of the original value in the inertial frames.  相似文献   

15.
马小三  王安民 《物理学报》2008,57(4):2026-2030
利用负性纠缠度(negativity)研究了两个三能级原子系统在费米环境中的纠缠演化问题-结果表明,两个三能级原子系统的纠缠演化不仅依赖于系统和环境的相互作用强度,而且还依赖于系统所处的具体量子态-通过例子发现,系统和环境相互作用强度越大,纠缠衰减越快;对于纯态,仅当时间趋于无穷时纠缠才被完全破坏;对于混态,则在有限的时间内纠缠即被彻底破坏-通过一般的分析找到了一类免退相干的量子子空间-在这些子空间中,量子态不受环境的影响,故其纠缠不变-研究有助于理解费米环境造成的退相干对玻色系统纠缠的影响- 关键词: 费米环境 纠缠演化 两个三能级原子  相似文献   

16.
We study the system-reservoir dynamics of quantum correlations in the decoherence phenomenon within a two-qubit composite system interacting with a common photonic band-gap (PBG) environment. We compare the dynamics of entanglement with that of quantum discord. By analytical and numerical analyses we find that, the quantum discord can maintain a constant value in the long-time limit even when entanglement suddenly disappears. We also show that the detuning conditions play a crucial role in controlling quantum correlations of the two-qubit system. In PBG environment, the stationary quantum discord can be attained in well-controlled conditions. Our results have lots of potential applications to quantum information processing in nanostructured materials.  相似文献   

17.
In this paper, we revisit the problem of quantum entanglement in an oscillating macroscopic mirror previously studied by Marshall et al. consisting of a modified Michelson interferometer where one of the mirrors is free to oscillate about its center of mass. A photon incident upon the oscillating mirror becomes entangled with the mirror, driving the mirror into a superposition of quantum states. Once the photon and mirror decouple, the mirror returns to its initial state. The purpose of our investigations was to optimize the parameter regime, taking into consideration the current state of technology and the demands imposed by the need to maintain a stable environment in the presence of thermal noise. Optimization should not demand ultra-low temperatures and this is reflected in our results. Our results also show that if the separation between states is maintained at 10-14 m, the mirror size is reduced, making it easier to induce superposition in the mirror. The critical nature of mirror reflectivity and its connection to cavity decay rate was also revealed by our investigations. The results obtained through our investigations could be useful in quantum error correction, where decoherence negatively affects the results of computations performed by quantum computers. Finally, we note that we are only concerned with an isolated system, where no losses to the external environment occur and any decoherence that occurs within the system remains internal to the system; that is, any mention of decoherence refers specifically to recoverable decoherence.  相似文献   

18.
We study the dynamics of classical correlation and quantum discord of two-qubit system interacted with the thermal reservoir. Special attention is paid to the difference between the entanglement and quantum discord when considering the influences of the nonzero mean photon number and quantum fluctuation of the vacuum. It is shown that in the same range of the physical parameters, the factors leading to the entanglement sudden death only accelerates the decay of quantum discord, and the quantum discord can last for an infinite period when the entanglement disappears. So the quantum discord is more robust than entanglement under this decoherence environment, and quantum discord is a more general measure of quantum correlation than entanglement.  相似文献   

19.
宗晓岚  杨名 《物理学报》2016,65(8):80303-080303
量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.  相似文献   

20.

We investigate the dynamics and protection of quantum entanglement of a qutrit-qutrit system under local amplitude damping channels with finite temperature. We consider two different initial states. We find that the qutrit-qutrit entanglement decays monotonically as the decoherence strength increases, and may go through entanglement sudden death at higher temperature. Special attention is paid to how to protect the quantum entanglement from decoherence by weak measurement and quantum measurement reversal. Our results show that the entanglement increases with the increase of weak measurement strength when the temperature is lower. However, the protections of entanglement by weak measurement and quantum measurement reversal are almost failed and the decays of entanglement goes up with the increase of weak measurement strength for different decoherence strength when the temperature is higher, even entanglement suffers sudden death.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号