首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a general and fascinating problem of quantum entanglement (QE) that is calculated with the help of quantum Fisher information (QFI) and von Neumann entropy (VNE) for moving two-level atomic systems. We calculate numerically the temporal evolution of the state vector of the entire system under the influence of intrinsic decoherence for a moving two-level atom. We demonstrate that the phase shifts of an estimator parameter, intrinsic decoherence, and the atomic motion play an important and prominent role during the time evolution of the atomic system. We observe that there is a monotonic relation between the atomic quantum Fisher information (QFI) and quantum entanglement (QE) in the absence of atomic motion. We also show that at the revival time the local maximum values of QFI decreases gradually. A periodic behavior of QFI is observed in the presence of atomic motion, which becomes more important and remarkable for two-level atomic systems. Moreover, the atomic quantum Fisher information and entanglement demonstrate an opposite response during the time evolution in the presence of atomic motion. We show that the evolution of entanglement is more susceptible to the intrinsic decoherence; a considerable change occurs in the degree of entanglement when the intrinsic decoherence parameter increases. Intrinsic decoherence in the atom–field interaction represses the nonclassical effects of the atomic systems. Both the entanglement and the quantum Fisher information saturate to their lower levels for longer time scales in the presence of intrinsic decoherence. For larger values of intrinsic decoherence, the sudden death of entanglement is observed.  相似文献   

2.
By analytically solving the master equation, we investigate quantum state transfer, creation and distribution of entanglement in the model of Milburn’s intrinsic decoherence. Our results reveal that the ideal spin channels will be destroyed by the intrinsic decoherence environment, and the detrimental effects become severe as the decoherence rate γ and the spin chain length N increase. For infinite evolution time, both the state transfer fidelity and the concurrence of the created and distributed entanglement approach steady state values, which are independent of the decoherence rate γ and decrease as the spin chain length N increases. Finally, we present two modified spin chains which may serve as near perfect spin channels for long distance state transfer even in the presence of intrinsic decoherence environments.  相似文献   

3.
Taking into account the intrinsic decoherence, we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included. We compare entanglement measured by entanglement of formation, quantum discord and measurement-induced measurement (MID) and illustrate their different characteristics. Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit. In the time evolution, quantum discord could be generated or enhanced to the stable value, while MID just decreases to the stable value.  相似文献   

4.
Taking into account the intrinsic decoherence,we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included.We compare entanglement measured by entanglement of formation,quantum discord and measurement-induced measurement(MID)and illustrate their diferent characteristics.Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit.In the time evolution,quantum discord could be generated or enhanced to the stable value,while MID just decreases to the stable value.  相似文献   

5.
We analyze the time evolution of entanglement of two-qutrit system within the framework of Milburn's model of intrinsic decoherence. The entanglement evolution relies not only on the parameters of system, but also on the concrete states either pure or mixed. The linear entropy used to measure the extent to which the intrinsic decoherence affects quantum states is evaluated.  相似文献   

6.
By considering the intrinsic decoherence effect, we investigate the entropy exchange and entanglement in the interacting system of a superconducting charge qubit coupled to a single-mode optical cavity. We found that although the intrinsic decoherence leads to an irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator, and has an apparently influence on the partial entropies of the two-component subsystems, it dose not destroy entropy exchange behavior. In addition, the lower bound of the concurrence, as the measure of entanglement of the coupling system, is calculated. It is shown that the evolution of entanglement is sensitive to the change of the intrinsic decoherence.  相似文献   

7.
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.  相似文献   

8.
Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.  相似文献   

9.
曹连振  刘霞  赵加强  杨阳  李英德  王晓芹  逯怀新 《物理学报》2016,65(3):30303-030303
量子信息技术主要基于量子纠缠,量子纠缠源作为重要的相干叠加态,其相干性很容易受到环境的影响而变得非常脆弱,甚至导致量子信息处理的失败.因此,全面揭示不同噪声环境和不同噪声信道下量子纠缠源演化规律,进而探寻抑制退相干的方法就显得至关重要.本文以量子信息最基本的单元-两比特纠缠对作为研究对象,实验上利用线性光学系统模拟了比特翻转和相移噪声(集体和非集体),研究了纠缠源在不同噪声环境及单、双和混合噪声信道下保真度的变化规律.实验结果表明:对同一种噪声类型,当纠缠比特经过双通道噪声环境时,其纠缠特性破坏得快;当纠缠比特经过非集体环境时,其纠缠特性消失得快.对不同噪声类型比较,结果表明比特翻转噪声相对于相移噪声更容易破坏纠缠特性.所得结论对纠缠退相干的理论和实验研究具有重要的借鉴意义,同时对基于非线性光学系统的量子信息处理技术具有重要的应用价值.  相似文献   

10.
We analyze different entanglement measures for a mixed state two-level system in the presence of intrinsic decoherence. The information about entanglement is obtained by comparing the results for the atomic Wehrl entropy and negativity with the analytical results for a simple case. For the strong decoherence case we find that a similar and long-lived maximum Wehrl entropy and negativity between atom and field are shown. The results highlight the important roles played by both the decoherence parameter and the initial state setting in determining the evolution of the atomic Wehrl entropy and negativity.  相似文献   

11.
We investigate the entanglement dynamics and decoherence of a multipartite system under an environment which can exhibit a quantum phase transition. Our result implies that the entanglement evolution depends not only on the size of the system and the quantum states of concern but also on the environment. In the sense of the linear entropy to measure decoherence induced by the environment, the decoherence-free subspaces have been identified for our model.  相似文献   

12.
Classical correlation (CC), quantum discord (QD) and entanglement (QE) of two qubits in one-side and two-side decoherence models are investigated. The sudden change of quantum discord (DSC) as well as classical correlation and sudden death of entanglement (ESD) are found. It is proved that QE (QD) presents no sudden change (sudden death). We prove that, for nonzero occupation number of the reservoir, QE must suffer sudden death; For zero occupation number and X-form initial states, we obtain the states which are robust and the states which experience sudden death. It is verified that if DSC and ESD occur under one-side decoherence, then it must appear in the two-side decoherence, while the reverse does not hold. We obtain the boundaries of CC-QE plane and QD-QE plane, and give the state possessing maximal amount of CC (QD) for a given amount of QE.  相似文献   

13.
张剑  邵彬  邹健 《中国物理 B》2009,18(12):5179-5188
Considering intrinsic decoherence, the two-atom two-mode Raman coupled model is investigated in this paper. Utilizing the constants of motion in this model, we obtain the analytic expressions of the density operator of the system for investigating the entanglement of two atoms. The speed of entanglement decay increases with the increasing of the coupling coefficient of one atom. The difference between the oscillation periods when the initial state parameter of atomic subsystem belongs to two intervals becomes smaller with the increasing of the coupling coefficient of one atom. The increasing of the initial photon number of the second field can hasten the vanishing of entanglement of atomic subsystem. The robustness of atomic entanglement against decoherence depends on the interval of the initial state parameter of atomic subsystem.  相似文献   

14.
15.
《Neutron News》2012,23(4):12-17
Multiparticle quantum entanglement (QE) and its dynamical properties are in the focus of several experimental and theoretical fields of modern physics and engineering (e.g., quantum optics, quantum computation, quantum cryptography, and teleportation). This is due to the potential applicability of QE for quantum computers and quantum information technology. If the quantum entangled particles are sufficiently isolated from their environment, coherence can persist for long times and quantum phenomena are revealed. However, under realistic conditions, the entangled objects are continuously interacting with their environment. Thus, coherence is lost and classicality emerges. This process is called decoherence [1] and represents the main problem for the realization of a quantum computer.  相似文献   

16.
双模场与原子相互作用中的量子纠缠和内禀退相干   总被引:2,自引:0,他引:2       下载免费PDF全文
谭霞  张成强  夏云杰 《物理学报》2006,55(5):2263-2268
通过求解系统的Milburn方程,研究了两能级原子与双模SU(1,1)相干态光场发生相互作用系统中,原子与场的纠缠及双模SU(1,1)相干态场的模间纠缠随时间的演化问题,讨论了内禀退相干、双模光子数差等对纠缠度的影响.结果表明,存在内禀退相干时,随着时间的演化,场-原子纠缠逐渐减小到一个确定值,而模间纠缠逐渐增大到一个确定值,两者演化的最终值只取决于双模光子数差和平均光子数,而与内禀退相干因子无关. 关键词: Milburn理论 SU(1 1)相干态 量子约化熵 量子相对熵  相似文献   

17.
The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.  相似文献   

18.
通过调节动静态理想光子禁带模型库的结构参数,研究了初态处于激发态的两能级原子系统的演化.在静态无调制下研究理想光子禁带模型库环境的半宽度、中心谐振频率及比重对原子布居数演化的影响.在理想光子禁带库环境的中心共振频率受动态调制下,其调制形式分别取为:矩形单次脉冲、矩形周期性脉冲和缓变连续周期.在此基础上讨论动态调制形式的不同对原子布居数演化的影响.无论怎样的动态调制形式,衰减抑制在原子系统的演化过程还是有较明显的体现.这样就使得利用环境变化对原子布居数和原子系统相干性演化调制的想法得以实现.  相似文献   

19.
Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.  相似文献   

20.
Utilizing the concurrence and the quantum discord as the measure method, in this paper we compare and investigate the dynamic evolution features of quantum correlations of coupled qubits in non-Markovian process. We focus attention on decoherence effect influences the stability of quantum correlations. The investigation results show that because of the decoherence influence between the system and environment, the concurrence always evolves with time in oscillation form in the way of deaths and survivals, however, the quantum discord time evolution does not appear the deaths and survivals. The quantum discord survives obviously longer than concurrence, which indicates that quantum discord has a stronger ability to resist decoherence than entanglement. Through regulating and controlling the purity and entanglement of the initial quantum state, we can effectively suppress the decay of the quantum correlations, which is advantaged to complete the quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号