首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this paper, we present a study on two-channel multilayer mirrors which can operate at two wavelengths in Extreme Ultraviolet (EUV) spectral range. We propose a new method to design two-channel EUV multilayer mirrors with enhanced spectral selectivity. The mirror structure is a stack of two periodic multilayers separated by a buffer layer. We have defined the main parameters which allow adjustment of the distance between different order Bragg’s peak and of wavelength positions of reflectivity minima. Two mirrors have been designed and deposited for solar EUV telescope applications by using this method. The first mirror reflects Fe IX–X line (17.1 nm) and Fe XVI (33.5 nm) lines with attenuation of the He II line (30.4 nm). The second mirror reflects Fe IX–X and He II lines with attenuation of Fe XV (28.4 nm) and Fe XVI lines. Measurements with synchrotron radiation source confirm that, in both cases, for these mirrors, we are able to adjust reflectivity maxima (Bragg peak position) and minima. Such multilayers offer new possibilities for compact design of multi-wavelength EUV telescopes and/or for high spectral selectivity.  相似文献   

2.
Traditional periodic multilayer reflector working in the soft X-ray region should be placed at the designed incidence angle and wavelength, which is extremely difficult and complicate in practice especially for “near water window region” (4.43-6.50 nm). In this region, Ni-like-Ta laser working at the wavelength 4.48 nm provides a possible source which has caught a lot attention. In this paper, to overcome the shortcoming of the periodic structure, top-flat broad band (normal incidence) and broad angular (around quasi-Brewster angle) Cr/C non-periodic multilayer reflector have been designed for the 4.48 nm soft X-ray optical system. In the wavelength region 4.473-4.488 nm, 4.455-4.496 nm and 4.435-4.529 nm, mean theoretical normal-incidence reflectivity can get 35.0%, 24.2% and 12.6%, respectively, by the top-flat broad band reflectors. In the grazing incidence angle region 44.85-45.16°, 44.54-45.46° and 44.02-45.98°, mean s-component theoretical reflectivity at 4.48 nm can get 39.7%, 23.1% and 13.0%, respectively, by the top-flat broad angular reflectors.  相似文献   

3.
The shapes of the astrophysically interesting neutral manganese (Mn I) resonance spectral lines (403.075, 403.306, 403.448, 279.481, 279.826 and 280.108 nm) have been observed together with six other prominent Mn I lines in the laboratory helium plasma at a 47 000 K electron temperature and electron density. With these plasma parameters the Stark broadening has been found to be an important mechanism in the Mn I line shape formation. Our measured Mn I Stark widths (W) are the first data in the literature. Stark widths are compared with line hyperfine structure splittings (Δhfs). At above mentioned helium plasma conditions the line broadening due to hyperfine structure splitting of the lines is less than that of the Stark and Doppler broadening for the case of the Mn I lines under investigation. We estimate that at electron densities below and electron temperatures below 4000 K the components in the hyperfine structure play an important role in the mentioned Mn I line shape formation.  相似文献   

4.
An integrated tunable optical filter (TOF) based on thermo-optic effect in silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs (distributed Bragg reflectors) and separating by a variable refractive index polymer Fabry–Perot (F–P) cavity. The designed device exhibits Q = 24077, FWHM = 0.065 nm and finesse = 566. Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity. As the cavity polymer is heated, the refractive index of the cavity decreases. When the temperature of cavity polymer changes within 105, the central wavelength gets a continuous 35 nm shift from 1530 nm to 1565 nm, which can operate the whole C-band in the WDM (wavelength division multiplexing) networks. Moreover, by calculating, the tuning sensitivity is about 0.33 nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.  相似文献   

5.
The performance of one-dimensional (1D) coupled cavities photonic crystal (PC) filters has been analyzed by finite-difference time-domain (FDTD) simulation. It is shown that the addition of tapered Bragg mirrors at each side of the cavities, to create near-Gaussian field profiles for the cavity modes, results in the prediction of near flat-top passband filters with high out-of-band rejection ratio and near unity transmission. The tapered structures suppress the vertical radiation loss to allow optimization of the number of mirror periods for the best filter response whilst guaranteeing high transmission. A critical coupling condition (k = 2Lout/Lin = 1) for flat-top responses in doubly coupled cavities filters is proposed in the tapered structures. An optimized filter for 100 GHz optical communication system are demonstrated with 1 dB bandwidth of 0.17 nm, roll-off of 0.6 dB/GHz, out-of-band signal rejection of 33 dB and transmission of 95%. Further improvement of roll-off and out-of-band rejection is demonstrated in a triply coupled cavities filter.  相似文献   

6.
A large aperture tapered fused silica fiber phase conjugate mirror with a maximum 50.7% stimulated Brillouin scattering (SBS) reflectivity is presented, which is operated with 400 Hz pulse repetition rate and 36.5 mJ input pulse energy. To the best of our knowledge, it is the first time that over 50% SBS reflectivity is achieved by using solid-state phase conjugate mirror under such high pulse repetition rate and high pulse energy. With much higher pulse repetition rate of 500 and 1000 Hz, the maximum SBS reflectivity is 41.2% and 33.3%, respectively. A single-longitudinal-mode Nd:YAG laser is experimentally studied with master oscillator power amplifier (MOPA) scheme using such a tapered fiber as a phase conjugate mirror. A 101 mJ pulse energy is achieved at 400 Hz repetition rate, with a pulse width of 6 ns and a M2 factor of less than 2. The corresponding peak power reaches 16.8 MW.  相似文献   

7.
Accurate laser spectroscopic studies of the principal resonance transitions in Rb and Cs atoms embedded in liquid helium have shown appreciable line shifts and change in line profiles. A pilot attempt has been made here to compute ab-initio the spectral line shift of the resonance excitation lines in Rb under such a confinement. Relativistic density functional theory (RDFT) within local density approximation (LDA) has been adopted. A model cluster of fourteen helium atoms surrounding the central Rb is assumed. With an optimized radius of the cluster of 5.15 Å the RLDA estimate of the blue shift of the lowest 2S → 2P excitation line of Rb comes out to be 15.4 nm which compares very well with the experimental value of 16.4 nm.  相似文献   

8.
The laser oscillating at a weak line of Nd:YAP around 1.3-μm realized though selecting polarization is described. The energy level transitions of Nd:YAP crystal and their polarization properties were analyzed. A thin-film polarizer was adopted to restrain the oscillating of the c-axis strong polarized spectral lines and a reasonable transmittance was designed to suppress the a-axis polarized 1064 nm strong line lasing, and then a-axis polarized 1339 nm pulse laser of 336 mJ for free running mode and 64 mJ for electro-optic Q-switched mode were successfully achieved, corresponding to pulse widths of 180 μs and 35 ns, respectively. This method of selecting polarization to realize weak line oscillating is significant for anisotropic laser crystals doped with Nd3+ ions to select the particular transitions.  相似文献   

9.
Cr/C is a promising material combination for multilayer mirror in the “near water window region” (4.4-6.7 nm). In the present paper, the effect of defects on the reflectivity of Cr/C soft X-ray multilayer mirror deposited by magnetron sputtering was studied. Formation of thin interlayer due to the interdiffusion, rough interface due to the non-sharp layer and contamination of O happened during the deposition process were found by a method combined by XPS, soft X-ray reflectivity at 4.48 nm and grazing incidence hard X-ray reflectivity at 0.154 nm. The XPS results show that both interlayers (Cr-on-C and C-on-Cr) are mixture composed of C sp2, C sp3, CO, CO, CrCr and CrO bondings. No chromium carbide was found at the interlayer probably due to the blocking of oxides’ formation. Through the analysis of X-ray reflectivity, we obtained the multilayer structure parameters (thickness and roughness) and optical constants of each layer at 4.48 nm. Based on those results, a further calculation was carried out. The result shows that the formation of the thin interlayer contributes little to the decrease of the reflectivity, the rough interface decreases the reflectivity most and the contaminant (O) not only decreases the reflectivity but also shifts the position of the peak.  相似文献   

10.
This paper proposes an optical method for measuring small displacements using the surface plasmon resonance (SPR) heterodyne interferometry. A heterodyne light beam reflected by a mirror passes through a hemisphere glass and then enters into a surface plasmon resonance apparatus at the resonant angle. A small displacement of the mirror will introduce a phase-difference variation between p- and s-polarizations of the light emerging from the SPR apparatus. The phase-difference variation can be precisely measured with the heterodyne interferometric technique, and the associated displacement can be estimated. The feasibility of this method was verified by experiment, and the displacement measurement resolution of about 1.4 nm over a traveling range of 6 μm was achieved. Our method of measurement has the merits of both common-path interferometry and heterodyne interferometry.  相似文献   

11.
R.W. Mao  J.Z. Yu 《Optics Communications》2008,281(6):1582-1587
A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 μm has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0.16 A/W at the resonance wavelength of 1.55 μm have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested.  相似文献   

12.
We report on gain-saturated operation of the 4d → 4p, J = 0-1, 11.4 nm soft-X-ray laser line in Ni-like antimony (Sb) at a pump energy of only 2.5 J. The driving laser used was a 1054 nm Nd:glass CPA laser system with a pulse duration of 7 ps (FWHM). The pump beam was focused with a tilted on-axis parabolic mirror in a grazing-incidence (GRIP) pumping configuration at an incidence angle of 45°. A fraction of 2.8% of the pump energy (∼70 mJ) was used for the prepulse, which was propagated along the same beam line as the main pulse and arrived at the target 4.4 ns before the main pulse.  相似文献   

13.
The discovery of nanometer fringes in laser self-mixing interference   总被引:1,自引:0,他引:1  
We demonstrate the influences of optical feedback from an external mirror with high reflectivity in a He-Ne laser on self-mixing interference fringes and laser polarization states. When the external mirror is tilted to a certain level, the stable and uniform nanometer resolution fringes are generated. The fringe density is 40 times than that of the conventional self-mixing interference or two beam interference, and has still potential to be improved. Each self-mixing interference fringe corresponds to λ/80 displacement of the external mirror, i.e. 7.91 nm displacement of the external mirror. Moreover, when the movement direction of the external mirror is changed, the polarization flipping between two eigenstates will happen. The potential applications of the results are also discussed.  相似文献   

14.
Grazing-incidence pumped Ni-like Sn X-ray laser media at 11.9 nm (4d-4p, J = 0-1) is modelled using code EHYBRID and a post-processor code. The required atomic data are obtained using the Cowan code. In this study the pre-formed plasma is pumped on longitudinal direction with a grazing angle. Detailed simulations were performed to optimize the driving laser configurations. Relatively high gain is produced for the Ni-like Sn X-ray laser at 11.9 nm with long pre-pulse and short main pulse drive energy of only 100 mJ on 4 mm slab targets. Using low intensity pre-pulse prior to long pulse decreases the electron density gradient. X-ray resonance lines between 13 and 25 Å emitted from tin plasma have been simulated using post-processor coupled with EHYBRID. The ratio of these resonance lines can be used to measure electron temperature of the laser produced Sn plasma.  相似文献   

15.
We have investigated the ferromagnetic resonance (FMR) response of as-made and temperature annealed FePt magnetic nanoparticles. The as-made nanoparticles, which have been fabricated by a chemical route, crystallize in the low magnetic anisotropy fcc phase and have a diameter in the range of 2-4 nm. The annealing of the particles at high temperatures (TA=550, 650 and C) in an inert Ar atmosphere produces a partial transformation to the high magnetocrystalline anisotropy L10 phase, with a significant increase in particle size and size distribution. FMR measurements at X-band (9.5 GHz) and Q-band (34 GHz) show a single relatively narrow line for the as-synthesized particles and a structure of two superimposed lines for the three annealed samples. The origin of this line shape has been attributed to the presence of the disordered fcc phase. Assuming that the system consists of a collection of identical particles with a random distribution of easy axes, we have been able to estimate a mean value for the magnetic anisotropy constant of the particles in the fcc phase, K∼2×106 erg/cm3. The measured line shape in the annealed samples can be explained if we consider that the magnetic anisotropy of the particles has a gaussian distribution with a relatively broad width.  相似文献   

16.
A method to obtain three-dimensional sub-micrometric periodic structures is presented. The experimental set-up consists in a pulsed UV laser beam source (λ = 355 nm) coming into an interferometer in order to generate four beams converging inside a chamber. According to the directions, to the relative intensities and to the polarizations of these four beams, a 3D interference pattern can be obtained inside the overlapping volume of these four beams; the characteristics of the four laser beams have been optimized in order to obtain a maximal contrast of intensity. In order to visualize the interference pattern, its contrast and its stability at each laser pulse, a video camera coupled to an oil immersion microscope objective has been installed above the interferometer. By suppressing the central beam, it is also possible to generate a bidimensional interference pattern which defines an hexagonal structure in the (1 1 1) plane with a period of 377 nm.This optical set-up has been used to obtain 3D sub-micrometric periodic structures in negative photoresists. Experiments consist in a one- or multi-pulse irradiation of the photoresist followed by a development procedure which leads to a sub-micrometric face-centred cubic structure cut in a (1 1 1) plane with a cell parameter of 650 nm. The optimization of the experimental conditions is presented for two kinds of photoresists; the role of the substrate according to its reflectivity at the laser wavelength and its influence on the interference pattern is also discussed.  相似文献   

17.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

18.
We have designed and grown a resonant, low-finesse quantum-dot saturable absorber mirror and subsequently modified the important parameters using chemical etching. The modulation depth and saturation fluence at the design wavelength of 1064 nm were modified by etching the sample to tune the cavity resonance. The device properties were characterised using normal incidence spectroscopic reflectivity measurements, intensity dependent reflectivity measurements and modelled using a transfer matrix approach. The saturable absorber mirror was used to facilitate self-starting, passively mode locked pulses in a neodymium vanadate laser operating at 1064 nm. The etching was found to affect the duration of the pulses, leading to temporal width tuning over a range of 94 ps. The shortest pulse duration of 84 ps was achieved for the cavity resonance close to 1064 nm, with an output power of 3 W. This method is an effective technique for post-growth engineering of the properties of semiconductor saturable absorber mirrors (SESAMs) with nanometre precision.  相似文献   

19.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

20.
Europium doped BaAl12O19 powder phosphors have been synthesized by combustion process within few minutes. The phosphors have been characterized by XRD, SEM, FT-IR, EPR and PL techniques. The EPR spectrum exhibits an intense resonance signal at g=1.96 characteristic of Eu2+ ions. In addition to this two weak resonance signals have been observed at g=2.28 and g=4.86. The population of the spin levels (N) for the resonance signal at g=1.96 is calculated as a function of temperature. By post-treating the phosphor at 1350 °C under a reducing atmosphere, it is observed that the population of spin levels has been increased five times. The excitation spectrum shows a peak at 326 nm with a shoulder at 290 nm. Upon excitation at 326 nm, the emission spectrum exhibits a well defined broad band with maximum at 444 nm emitting a blue light corresponding to 4f65d→4f7 transition. The luminescence intensity also has been enhanced to 60% by post-treating the phosphor at 1350 °C under a reducing atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号