首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polystyrene-block-poly(2-cinnamoylethyl methacrylate) (PS-b-PCEMA) and poly(acrylic acid)-block-poly(2-cinnamoylethyl methacrylate) (PAA-b-PCEMA) were synthesized. These polymers formed micelles with PCEMA as the core in solvents poor for the PCEMA block but good for the other blocks. When the PS block was much longer than the PCEMA block, star micelles were prepared. The PCEMA cores of these micelles were then photo-crosslinked to yield PS star polymers. Nanospheres of PCEMA were obtained by photolyzing crew-cut micelles of PAA-b-PCEMA, in which the water-soluble PAA block was much shorter than the water-insoluble PCEMA block. PS-b-PCEMA self-assembled at silica and their THF/cyclopentane micellar solution interfaces to form diblock monolayers called polymer brushes, in which the insoluble PCEMA block spread like a melt on the silica surface and the chains of the soluble PS block stretched into the solution phase like bristles of a brush. By tuning the relative composition, PCEMA in bulk formed cylindrical micro-domains dispersed in the continuous PS matrix. Irradiation of the PS-b-PCEMA brushes enabled our preparation of crosslinked PS-b-PCEMA monolayers. Nanofibers were prepared by dissolving in THF the irradiated PS-b-PCEMA films with crosslinked cylindrical PCEMA micro-domains.  相似文献   

2.
The effect of increasing concentration of each of three polar solvents [0–40 % (v/v) 1,4-dioxane, 0–40 % (v/v) dimethyl sulfoxide (DMSO), and 0–60 % (v/v) N,N-dimethylformamide (DMF)] on changes in the shape of the surfactant polysorbate 20 (Tween 20) micelles in the aqueous, polar solvent, sodium phosphate buffer solutions (pH = 7.2, ionic strength 2.44 mmol·L?1) were investigated by using small-angle X-ray scattering. The effect of increasing concentration of 1,4-dioxane is that the micelle shape changed from core–shell cylindrical micelles to core–shell disc micelles between concentrations of 10 and 20 % (v/v) 1,4-dioxane, and then from core–shell disc micelles to core–shell elliptic disc micelles between concentrations of 30 and 40 % (v/v) 1,4-dioxane. The effect of increasing concentration of DMSO is that the micelles changed from core–shell cylindrical micelles to core–shell disc micelles between concentrations of 0 and 10 % (v/v) DMSO. The effect of increasing concentration of DMF is that it changed the core–shell cylindrical micelles to core–shell disc micelles between concentrations of 30 and 40 % (v/v) DMF. The common effect is that the solvents shortened the height of the micelle, that is, they squashed the micelle. Moreover, the specific effect of 1,4-dioxane is that this solvent squashed and squeezed the micelle.  相似文献   

3.
We report the creation and properties of colloidally stable shell-cross-linked cylindrical organometallic block copolymer micelles with adjustable length and swellability. The one-dimensional (1D) structures with semicrystalline polyferrocenylsilane (PFS) cores and polyisoprene (PI) coronas were initially self-assembled from PI-b-PFS block copolymers in a PI-selective solvent such as hexane. The length of the cylinders could be varied from hundreds of nanometers to several tens of micrometers by adjusting solution conditions, using various solvents such as hexane, decane, or hexane/THF (or toluene) mixtures. The cylindrical micelles with vinyl groups in the PI corona were cross-linked through a Pt(0)-catalyzed hydrosilylation reaction using 1,1,3,3-tetramethyl disiloxane as a cross-linker at room temperature. The shell cross-linking significantly increased the stability of the micelles relative to the un-cross-linked precursors as no fragmentation was observed upon sonication in solution. In addition, the structural integrity of the micelles was also enhanced after solvent removal; a solid sample was successfully microtomed and then examined using TEM, which revealed circular cross-sections for the PI-b-PFS micelles with an average diameter of ca. 15 nm. We also discovered that shell cross-linking is a prerequisite for generating ceramic replicas through the pyrolysis of PI-b-PFS aggregates. Moreover, we were able to pattern the cross-linked micelles on a flat substrate by microfluidic techniques, generating perpendicularly crossed lines of aligned micelles. In short, the shell-cross-linked PI-b-PFS 1D organometallic aggregates are a promising new type of nanomaterial with intriguing potential applications.  相似文献   

4.
For the preparation of core‐shell nanoparticles containing functional nanomaterials, a photo‐cross‐linkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)‐b‐poly(2‐cinnamoyloxyethyl methacrylate)‐b‐poly(methyl methacrylate) (PEG‐PCEMA‐PMMA), was synthesized. This triblock copolymer was then used to encapsulate Au nanoparticles or pyrene. The triblock copolymer of PEG‐b‐poly(2‐hydroxyethyl methacrylate)‐b‐PMMA (PEG‐PHEMA‐PMMA) (Mn = 15,800 g/mol, Mw/Mn = 1.58) was first synthesized by activators generated by electron transfer atom transfer radical polymerization. Its middle block was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 45, 13, and 98, respectively. PMMA‐tethered Au nanoparticles (with an average diameter of 3.0 nm) or pyrene was successfully encapsulated within the PEG‐PCEMA‐PMMA micelles. The intermediary layers of the micelles were then cross‐linked by UV irradiation. The spherical structures of the PEG‐PCEMA‐PMMA micelles containing Au nanoparticles or pyrene were not changed by the photo‐cross‐linking process and they showed excellent colloidal stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4963–4970, 2009  相似文献   

5.
Previous work has established that polyisoprene (PI) coronas in cylindrical block copolymer micelles with a poly(ferrocenyldimethylsilane) (PFS) core can be irreversibly cross-linked by hydrosilylation using (HSiMe(2))(2)O in the presence of Karstedt's catalyst. We now show that treatment of cylindrical PI-b-PFS micelles with Karstedt's catalyst alone, in the absence of any silanes, leads to PI coronal cross-linking through Pt(0)-olefin coordination. The cross-linking can be reversed through the addition of 2-bis(diphenylphosphino)ethane (dppe), a strong bidentate ligand, which removes the platinum from the PI to form Pt(dppe)(2). The Pt(0) cross-linking of PI was studied with self-assembled cylindrical PI-b-PFS block copolymer micelles, where the cross-linking was found to dramatically increase the stability of the micellar structures. The Pt(0)-alkene coordination-induced cross-linking can be used to provide transmission electron microscopy contrast between PI and poly(dimethylsiloxane) (PDMS) corona domains in block comicelles as the process selectively increases the electron density of the PI regions. Moreover, following the assembly of a hierarchical scarf-shaped comicelle consisting of a PFS-b-PDMS platelet template with PI-b-PFS tassels, Pt(0)-induced cross-linking of the PI coronal regions allowed for the selective removal of the PFS-b-PDMS center, leaving behind an unprecedented hollowed-out scarf structure. The addition of Karstedt's catalyst to PI or polybutadiene homopolymer toluene/xylene solutions resulted in the formation of polymer gels which underwent de-gelation upon the addition of dppe.  相似文献   

6.
Triblock copolymers (MPEG‐b‐PCEMA‐b‐PHQHEMA) bearing cinnamoyl and 8‐hydroxyquinoline side groups with different block length are synthesized by a two‐step reversible addition fragmentation chain transfer polymerization of cinnamoyl ethyl methacrylate (CEMA) and 2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate (HQHEMA), respectively. The self‐assembly of MPEG‐b‐PCEMA‐b‐PHQHEMA in mixture of THF and ethanol is investigated by varying the ratio of THF and ethanol. Spheric micelles with diameter of 63.7 nm and polydispersity of 0.128 are obtained for MPEG113b‐PCEMA15b‐PHQHEMA17 in THF/ethanol with a volume ratio (v/v) of 5/5. The PCEMA inner shell of the resulted micelles is photo‐crosslinked under UV radiation to give stabilized micelles. The complex reaction of the stabilized micelles with Zn(II) is investigated under different conditions to give zinc(II)‐bis(8‐hydroxyquinoline)(Znq2)‐containing micelles. When the complex reaction is carried out in THF/ethanol (v/v = 5/5) or THF/toluene (v/v = 6/4) with zinc acetate, fluorescent Znq2‐containing micelles are obtained without obvious change in diameters and morphologies. The fluorescent micelles exhibit green emission with λmax at 520 nm. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1056–1064  相似文献   

7.
Stable organometallic cylindrical nanostructures have been prepared by shell cross-linking of PI320-b-PFS53 wormlike micelles in hexane through metal-catalyzed hydrosilylation at 23 degrees C. The cross-linked structures permit the formation of cylindrical ceramic replicas containing size- and separation-tunable arrays of Fe nanoclusters. In addition, microfluidic alignment of the cross-linked cylinders was possible.  相似文献   

8.
We previously showed that Caco-2 cell absorption of β-carotene from taurocholic acid (TA)-based mixed micelles differed depending on the composition of the micelles. In this study, the shapes and sizes of TA-based mixed micelles, that is, mixed micelles of TA, 1-oleoyl-rac-glycerol (MG), oleic acid (OLA), and either 1-palmitoyl-sn-glycero-3-phosphocholine (MPPC; i.e., a lysophospholipid) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC; i.e., a phospholipid) (60:3:1:0.75–12) were determined by using small-angle X-ray scattering (SAXS). We found that increasing the ratio of MPPC in mixed micelles of TA, MG, OLA, and MPPC was responsible for the previously observed enhanced β-carotene absorption by Caco-2 cells and changed the micelle shape from core–shell spherical to core–shell ellipsoidal. In contrast, increasing the ratio of POPC in mixed micelles of TA, MG, OLA, and POPC was responsible for the suppressed β-carotene absorption by the cells, changed the micelle shape from core–shell spherical to core–shell ellipsoidal to core–shell cylindrical, and caused a rapid increase in micelle volume. These results will be useful for understanding the mechanisms that mediate β-carotene absorption by cells and for developing technologies to improve the intestinal absorption of lipophilic components of drugs and nutrients.  相似文献   

9.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

10.
We have studied the effect of polystyrene (PS) homopolymer addition on the morphology of self-assembled block copolymer micelles made from linear or cyclic poly(styrene-b-isoprene), PS-b-PI, in a selective solvent for the PI block (heptane). Both copolymers have the same composition: the degree of polymerization is 290 for the PS block, and 110 for the PI block, and we focused on the influence of the addition of small amounts of PS homopolymer on the micellar morphology. For the copolymer concentrations considered, the linear copolymer self-organizes into spherical micelles while the cyclic copolymer forms cylindrical micelles. PS and PI chains constitute the core and the corona of these micelles, respectively, due to the different affinity of the blocks for heptane. Consequently, the PS homopolymer added is "solubilized" into the micellar core. Dynamic light scattering (DLS) data combined with atomic force microscopy (AFM) results show that the addition of PS homopolymer induces a drastic change in the micellar organization. Indeed, a morphological transition, from spheres to cylinders for the linear copolymer, and from cylinders to vesicles for the cyclic copolymer, is observed. These results highlight the fact that a small incorporation of PS homopolymer is clearly sufficient to modify the morphology (size and shape) of the micelles. This approach could be a key parameter for the design/control of micelles for specific applications in nanotechnology.  相似文献   

11.
Double‐responsive core‐shell‐corona complex micelles for applications in drug release were formed from self‐assembly of two diblock copolymers PtBA‐b‐ PNIPAM and PtBA‐b‐P4VP. The two diblock copolymers coaggregated into core‐shell complex micelles in acidic water with the hydrophobic PtBA blocks as the common core and soluble PNIPAM/P4VP blocks as the mixed shell. Increasing temperature or pH value, the micelles converted into core‐shell‐corona micelles because of the collapse of PNIPAM or P4VP blocks as the inner shell and soluble P4VP or PNIPAM chains stretching outside as the outer corona. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug in micelles in acidic water and released because of the ionization of NAP in alkaline solutions. Compared with pure core‐shell micelles, release of NAP from core‐shell‐corona complex micelles avoided the burst diffusion and the release rate is more easily controlled by tuning the composition of the mixtures or by adjusting the pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1804–1810, 2009  相似文献   

12.
Hybrid polymeric micelles self-assembled from a mixture containing poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) block copolymer and gold nanoparticles (AuNPs) were prepared. The effect of AuNPs on the self-assembly behavior of PBLG-b-PEG was studied both experimentally by transmission electron microscopy, scanning electron microscopy, and laser light scattering and computationally using dissipative particle dynamics (DPD) simulations. It was found that, the pure PBLG-b-PEG block copolymer self-assembles into long cylindrical micelles. By introducing AuNPs to the stock block copolymer solution, the formed aggregate morphology transforms to spherical micelles. The DPD simulation results well reproduced the morphological transformations observed in the experiments. And the simulation revealed that the main reason for the aggregate morphology transformation is the breakage of ordered packing of PBLG rods in micelle core by the added nanoparticles. Moreover, from the DPD simulations, the distribution information on nanoparticles was obtained. The nanoparticles were found to prefer to locate near the core/shell interface as well as in the core center of the micelles. The combination of experimental and simulation methods lead to a comprehensive understanding of such a complex self-assembly system.  相似文献   

13.
Using a coarse-grained model, we performed molecular dynamics simulations of the electrostatically driven self-assembly of strongly charged polyelectrolytes and diblock copolymers composed of oppositely charged and neutral blocks. Stoichiometric micelle-like complexes formed in a dilute solution represent cylindrical brushes whose conformation is determined by the linear charge density on the polyelectrolyte and by temperature. The core-shell morphology of the cylindrical brushes is proven. The core of these anisotropic micelles consists of an insoluble complex coacervate formed by the ionic chains and a shell made up of the neutral solvophilic blocks. As the concentration of macromolecules increases, the orientational ordering of ionic micelles takes place. The complexation can induce effective steric stiffening of the polyelectrolyte chains.  相似文献   

14.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


15.
Methacryloyl-endfunctionalized block copolymers consisting of styrene and 2-vinylpyridine were polymerized to polyblockcomacromonomers with a much higher main chain than side chain degree of polymerization. Like homopolymacromonomers these molecules exhibit the structure of cylindrical brushes. Since the vinylpyridine block is coupled to the polymerizable group, the resulting cylindrical macromolecules exhibit a core of vinylpyridine and a shell of polystyrene, thus resembling an amphipolar unimolecular micelle of cylindrical shape. The micellar character of the structure is demonstrated by loading the cylindrical brushes with tetrachloroauric acid in toluene. Subsequent reduction leads to the formation of colloidal gold, most probably within the brush in analogy to similar work on block copolymer micelles.  相似文献   

16.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Hybrid cylindrical micelles loaded with nanoparticles are fabricated via extrusion of spherical micelles in solution phase through small long cylindrical pores. Small gold nanoparticles (AuNPs) are pre‐coated with thiol‐terminated polystyrene and then further encapsulated in the core part of block copolymer spherical micelles by a precipitation method. By varying the starting mass ratio of AuNPs and the diblock copolymers polystyrene‐b‐polyisoprene (PS‐b‐PI) during the encapsulation, the AuNPs loading density along the cylindrical micelles can be controlled. The mechanism for this sphere‐to‐cylinder transition induced by extruding hybrid spherical micelles through small cylindrical nanopores is discussed. These findings provide a novel way to manufacture high‐quality and functional polymeric nano­wires, which may open the door to new applications such as in plasmonic waveguides.

  相似文献   


18.
Cylindrical block copolymer micelles with a crystalline poly(ferrocenyldimethylsilane) (PFDMS) core and a long corona-forming block are known to elongate through an epitaxial growth mechanism on addition of further PFDMS block copolymer unimers. We now report that addition of the semicrystalline homopolymer PFDMS(28) to monodisperse short (ca. 200 nm), cylindrical seed micelles of PFDMS block copolymers results in the formation of aggregated structures by end-to-end coupling to form micelle networks. The resulting aggregates were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). In some cases, a core-thickening effect was also observed where the added homopolymer appeared to deposit and crystallize at the core-corona interface, which resulted in an increase of the width of the micelles within the networks. No evidence for aggregation was detected when the amorphous homopolymer poly(ferrocenylethylmethylsilane) (PFEMS(25)) was added to the cylindrical seed micelles whereas similar behavior to PFDMS(28) was noted for semicrystalline polyferrocenyldimethylgermane (PFDMG(30)). This suggested that the crystallinity of the added homopolymer is critical for subsequent end-to-end coupling and network formation to occur. We also explored the tendency of the cylindrical seed micelles to form aggregates by the addition of PI-b-PFDMS (PI = polyisoprene) block copolymers (block ratios 6:1, 3.8:1, 2:1, or 1:1), and striking differences were noted. The results ranged from typical micelle elongation, as reported in previous work, at high corona to core-forming block ratios (PI-b-PFDMS; 6:1) to predominantly end-to-end coupling at lower ratios (PI-b-PFDMS; 2:1, 1:1) to form long, essentially linear structures. The latter process, especially for the 2:1 block copolymer, led to much more controlled aggregate formation compared with that observed on addition of homopolymers.  相似文献   

19.
A polystyrene-block-polyisoprene (PS-b-PI) sample with 130 styrene and 370 isoprene units was synthesized and characterized. The diblock formed mostly cylindrical micelles in N,N-dimethylacetamide with a PI core and a PS corona. The PI core of the micelles was cross-linked by S2Cl2 to yield nanofibers. The nanofibers were shortened by ultrasonication to yield fractions withweight-average length (Lw) between approximately 900 and approximately3400 nm. Transmission electron microscopy and light scattering were used to characterize the fractions. The zero-shear intrinsic viscosity data [eta] of the fractions were obtained in tetrahydrofuran (THF), THF/N,N-dimethylformamide (DMF), and THF/cyclohexane (CHX), where THF is a good solvent for both the corona and the core, DMF solubilizes only the corona, and CHX is a theta solvent for the corona chains at 34.5 degrees C. The [eta] data of the fractions were treated by the Bohdanecky method derived from the Yamakawa-Fujii-Yoshizaki (YFY) theory for wormlike polymer chains and yielded the persistence length lP and the hydrodynamic diameters dh for the nanofibers. The reasonable dh values and the reasonable trend of dh variation with solvent quality change establish unambiguously the validity of YFY theory.  相似文献   

20.
Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号