首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We systematically investigate the impact of granularity in CVD graphene films by performing Raman mapping and electrical characterization of single (SD) and multi domain (MD) graphene. In order to elucidate the quality of the graphene film, we study its regional variations using large‐area Raman mapping and compare the G and 2D peak positions of as‐transferred chemical vapor deposited (CVD) graphene on SiO2 substrate. We find a similar upshift in wavenumber in both SD and MD graphene in comparison to freshly exfoliated graphene. In our case, doping could play the dominant role behind the observation of such upshifts rather than the influence due to strain. Interestingly, the impact of the polymer‐assisted wet transfer process is the same in both the CVD graphene types. The electrical characterization shows that SD graphene exhibits a substantially higher (a factor 5) field‐effect mobility when compared to MD graphene. We attribute the low sheet resistance and mobility enhancement to a decrease in charge carrier scattering thanks to a reduction of the number of grain boundaries and defects in SD graphene.  相似文献   

2.
We report the synthesis of high‐quality graphene on Cu foils using hot‐filament chemical vapor deposition technique and demonstrate that by suitably varying the CH4 and H2 flow rates, one can also obtain hydrogenated graphene. Micro‐Raman spectroscopy studies confirm the growth of monolayer graphene as inferred from the intensity ratio of 2D to G peak which is nearly four in unhydrogenated samples. Detailed Raman area mapping confirms the uniform coverage of monolayer graphene. The grown layer is also transferred onto a Si substrate over ~10 × 10 mm sq. area. The present results provide a leap in synthesis technology of high‐quality graphene and pave way for scaling up the process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
仇巍  张启鹏  李秋  许超宸  郭建刚 《物理学报》2017,66(16):166801-166801
单晶石墨烯具有更优异的力学及电学性能,有望成为新一代柔性电子器件的核心材料.因此,有必要从实验的角度精细分析化学气相沉积法制得的大尺度单晶石墨烯与柔性基底复合结构的界面力学行为.本文通过显微拉曼光谱实验方法测量了不同长度的单层单晶石墨烯/PET(聚对苯二甲酸乙二醇酯)基底的界面力学性能参数及其在长度方向上界面边缘的尺度效应.实验给出了石墨烯在PET基底加载过程中与基底间黏附、滑移、脱黏三个界面状态的演化过程与应力分布规律.实验发现,单晶石墨烯与柔性基底间由范德瓦耳斯力控制的界面应变传递过程存在明显的边缘效应,并且与石墨烯的长度有关.界面的切应力具有尺度效应,其值随石墨烯长度的增加而减小,而石墨烯界面传递最大应变以及界面脱黏极限则不受试件尺度的影响.  相似文献   

4.
我们利用微机械剥离方法制备了三层石墨烯.在此基础上,利用两室气体传输法,以三氯化铁和钾为化学掺杂剂,成功合成了三层石墨烯的一阶p型和n型插层化合物.三层石墨烯的高分辨率拉曼光谱具有独特的2D谱峰线形,该线形可以用作指纹来鉴别三层石墨烯.三层石墨烯一阶插层化合物的拉曼光谱表明,三氯化铁和钾的插层掺杂使得三层石墨烯的层间耦...  相似文献   

5.
For the first time, a few layer graphene was grown on the surface of the polar X ‐cut (110) of a piezoelectric La3Ga5.5Ta0.5O14 crystal by the CVD method. This polar X ‐cut is characterized by a good matching of the crystal lattice parameters of La3Ga5.5Ta0.5O14 and two‐dimensional graphene crystal, as well as the presence of piezoelectric fields on the surface of the substrate, which could affect the graphene growth process. Raman spectroscopy investigation has shown the ability for direct growth of graphene on the piezoelectric crystal. The NEXAFS spectroscopy studies of the film grown on the surface of the X ‐cut of an La3Ga5.5Ta0.5O14 crystal also confirmed that the grown film is graphene. Moreover, the NEXAFS spectra enable the conclusion that additional electron states are formed as a result of chemical bonding between the atoms of graphene and the substrate which proceeds through hybridization of the valence electron states of the substrate and graphene atoms. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
The effect of vacuum annealing on the properties of graphene is investigated by using Raman spectroscopy and electrical measurement. Heavy hole doping on graphene with concentration as high as 1.5 × 1013 cm−2 is observed after vacuum annealing and exposed to an air ambient. This doping is due to the H2O and O2 adsorption on graphene, and graphene is believed to be more active to molecular adsorption after annealing. Such observation calls for special attention in the process of fabricating graphene‐based electronic devices and gas sensors. On the other hand, because the quality of graphene remains high after the doping process, this would be an efficient and controllable method to introduce heavy doping in graphene, which would greatly help on its application in future electronic devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Hot carrier cooling in few-layer and multilayer epitaxial graphene on SiC, and chemical vapor deposition (CVD) grown graphene transferred onto a glass substrate was investigated by transient absorption spectroscopy and imaging. Coupling to the substrate was found to play a critical role in charge carrier cooling. For both multilayer epitaxial graphene and monolayer CVD graphene, charge carriers transfer heat predominantly to intrinsic in-plane optical phonons of graphene. At high pump intensity, a significant number of optical phonons are accumulated, and the optical phonon lifetime presents a bottleneck for charge carrier cooling. This hot phonon effect did not occur in few-layer epitaxial graphene because of strong coupling to the substrate, which provided additional cooling channels. The limiting charge carrier lifetimes at high excitation densities were 1.8 ± 0.1 ps and 1.4 ± 0.1 ps for multilayer epitaxial graphene and monolayer CVD graphene, respectively. These values represent lower limits on the optical phonon lifetime for the graphene samples.  相似文献   

8.
A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles (?? between 10° and 15°). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.  相似文献   

9.
The mechanism of charge transfer through nanomaterials such as graphene remains unclear, and the amount of charge that can be transferred from/to graphene without damaging its structural integrity is unknown. In this communication, we show that metallic nanoparticles can be decorated onto graphene surfaces as a result of charge transfer from the supporting substrate to an adjoining solution containing metal ions. Au or Pt nanoparticles were formed with relatively high yield on graphene‐coated substrates that can reduce these metal ions, such as Ge, Si, GaAs, Al, and Cu. However, metal ions were not reduced on graphene surfaces coated onto non‐reducing substrates such as SiO2 or ZnO. These results confirm that graphene can be doped by exploiting charge transfer from the underlying substrate; thus graphene is not only transparent with respect to visible light, but also with respect to the charge transfer. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
The thermal stability in air of graphene synthesized by either chemical vapor deposition or mechanical cleavage is studied. It is found that single layer graphene prepared by both methods starts to show defects at ~500 °C, indicated by the appearance of a disorder‐induced Raman D peak. The defects are initially sp3 type and become vacancy like at higher temperature. On the other hand, bilayer graphene shows better thermal stability, and the D peak appears at ~600 °C. These results are quite different from those annealing in vacuum and controlled atmosphere. Raman images show that the defects in chemical vapor deposition graphene are not homogeneous, whereas those in mechanical cleavage graphene are uniformly distributed across the whole sample. The factors that affect the thermal stability of graphene are discussed. Our results could be important for guiding the future electronics process and chemical decoration of graphene. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The triple‐resonant (TR) second‐order Raman scattering mechanism in graphene is re‐examined. It is shown that the magnitude of the TR contribution to the photon‐G′ mode coupling function in graphene is one order of magnitude larger than the widely accepted two‐resonant coupling. Enhancement of the order of 100 in the Raman intensity, with respect to the usual double‐resonant model, is found for the G′ band in graphene, and is expected in the related sp2‐based carbon materials, as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
张晓波  青芳竹  李雪松 《物理学报》2019,68(9):96801-096801
石墨烯因其优异的性能在很多领域具有广阔的应用前景.目前石墨烯薄膜主要是以铜作为催化基底,通过化学气相沉积法制备.这种方法制备的石墨烯薄膜需要被转移到目标基底上进行后续应用,而转移过程则会对石墨烯造成污染,进而影响石墨烯的性质及器件的性能.如何减少或避免污染,实现石墨烯的洁净转移,是石墨烯薄膜转移技术研究的重要课题,也是本综述的主题.本综述首先简单介绍了石墨烯的转移方法;进而重点讨论由于转移而引入的各种污染物及其对石墨烯性质的影响,以及如何抑制污染物的引入或如何将其有效地去除;最后总结了石墨烯洁净转移所存在的挑战,展望了未来的研究方向和机遇.本综述不仅有助于石墨烯薄膜转移技术的研究,对整个二维材料器件的洁净制备也将有重要参考价值.  相似文献   

13.
The role of sulphuric acid (H2SO4) in fabrication graphene oxide besides as intercalant has not been well addressed. In this work, Raman spectroscopy is used to monitor structural evolution in chemical vapor deposition (CVD) graphene chemically oxidized by dilute H2SO4. From the analysis of Raman spectra of oxidized graphene, we propose that oxidation first initiates at preexisting defects, and vacancy‐like defects are formed. Following is the radial growth of the vacancy, and oxidation pits appear in graphene. This assumption is further confirmed by atomic force microscope measurement. It is also found that with increase of amounts of defects, G peak is blue shift, and this is explained by defect and hole doping effect. Hole doping in graphene is much stronger at hexagon regions near the oxidation pits. This work helps in understanding the role of H2SO4 in fabrication graphene oxide as oxidizer as well as helps in obtaining structure information of graphene oxide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Highly conductive biocompatible graphene is synthesized using ecofriendly reduction of graphene oxide (GO). Two strains of non‐pathogenic extremophilic bacteria are used for reducing GO under both aerobic and anaerobic conditions. Degree of reduction and quality of bacterially reduced graphene oxide (BRGO) are monitored using UV–vis spectroscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy. Structural morphology and variation in thickness are characterized using electron microscopy and atomic force microscopy, respectively. Electrical measurements by three‐probe method reveal that the conductivity has increased by 104–105 fold from GO to BRGO. Biocompatibility assay using mouse fibroblast cell line shows that BRGO is non‐cytotoxic and has a tendency to support as well as enhance the cell growth under laboratory conditions. Hereby, a cost effective, non‐toxic bulk reduction of GO to biocompatible graphene for green electronics and bioscience application is achieved using halophilic extremophiles for the first time.  相似文献   

15.
In this paper, we present a novel method of using graphene for sensing the inhomogeneous strain due to the surface relief in FeNiCoTi shape memory alloy. In the experiment, a large sheet of graphene fabricated by chemical vapor deposition was transferred onto the FeNiCoTi substrate. The flat surface of the substrate would become wrinkled due to the surface relief formed during the FeNiCoTi substrate phase transformation, meanwhile loading a tensile strain on the surface graphene. It is found that the 2D Raman peak of graphene demonstrates a significant red shift due to the tensile strain. The different colors exhibited in the Raman mapping image of the graphene directly displayed the strain distribution information across the surface. In the future, we may alter to quantitatively analyze the surface relief by using Raman spectroscopy instead of the atomic force microscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The substrate treatment with seeding promoter can promote the two-dimensional material lateral growth in chemical vapor deposition(CVD) process. Herein, graphene quantum dots(GQDs) as a novel seeding promoter were used to obtain uniform large-area MoS_2 monolayer. The obtained monolayer MoS_2 films were confirmed by optical microscope,scanning electron microscope, Raman and photoluminescence spectra. Raman mapping revealed that the MoS_2 monolayer was largely homogeneous.  相似文献   

17.
A facile sonochemical route for the synthesis of graphene nanosheets via reduction of graphene oxide (GO) has been reported. The synthesized graphene sheets are characterized using UV–vis spectra, Fourier transform infra-red (FT-IR) spectra, transmission electron microscope, X-ray photoelectron spectra (XPS) and Raman spectroscopic techniques. The UV–vis spectroscopy results showed that the absorption peak was red shifted due to the reduction of GO into graphene. FT-IR and XPS spectra revealed the removal of oxygenated functional groups in graphene after the reduction process. Raman spectra confirmed the restoration of new sp2 carbon domains in graphene sheets after the reduction. The sonochemical approach for the synthesis of graphene nanosheets is relatively fast, cost-effective and efficient as compared to other methods.  相似文献   

18.
The Raman spectra of sol–gel derived Co‐doped ZnO nanoparticles (NPs) in the spectral range 100–1500 cm−1 were investigated. In the sol–gel method, three different series of Co‐doped ZnO particles, i.e. Zn1−xCoxO (x = 0.05, 0.10, 0.15, and 0.20), were obtained using three different starting precursors, viz. cobalt chloride hexahydrate, cobalt acetate tetrahydrate, and cobalt nitrate hexahydrate, respectively. It has been observed that cobalt acetate is a better precursor in comparison to cobalt chloride and cobalt nitrate to obtain single‐phase Co‐doped ZnO NPs. As for cobalt acetate‐derived NPs, no hidden secondary phase of Co3O4 was observed for the lower (x = 0.05) Co concentration. The Fröhlich interaction associated with the longitudinal modes was found to be destroyed with increasing Co concentration due to structural disorder and defects induced by the dopant. In addition to ZnO and Co3O4 vibrational modes, a few additional modes near 550 and 715 cm−1 were also observed in all cases, which could be attributed to the modes due to Co doping in ZnO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Here, we demonstrate the synthesis of graphene on Ag foil by an atmospheric‐pressure (AP) chemical vapor deposition (CVD) process as tarnish‐resistant coating. Synthesis of a continuous graphene film on Ag foil is achieved using the solid camphor as carbon precursor in a gas mixture of Ar and H2. Tarnishing of the Ag surface through sulfidation is investigated with and without coating of the graphene film. It is observed that the bare Ag surface immediately reacts with sulfur vapor to turn black, whereas graphene coating passivates the Ag surface robustly and thereby restrains the sulfur reaction to preserve from tarnishing. Our findings show that a large‐area graphene film can be effectively grown on Ag surface by a CVD process as a tarnish and corrosion resistance barrier.

  相似文献   


20.
The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号