首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the challenges of the modern photonics is to develop all‐optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity‐Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non‐conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT‐symmetric photonic systems with an intensity‐dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly‐induced PT‐symmetry breaking, and all‐optical switching. Nonlinear PT‐symmetric systems can serve as powerful building blocks for the development of novel photonic devices targeting an active light control.

  相似文献   


2.
Due to the broad scattering spectral profiles, localized surface plasmon resonances (LSPRs) of Pd nanoparticles have low resolution and limited sensitivity for hydrogen detection. In this work, we use a simple light‐irradiation method to demonstrate that free‐space light can be efficiently coupled into and from the microfiber whispering‐gallery modes (WGMs) by the Pd nanoantennas. The nanoantenna–microfiber cavity system provides strong intermodal coupling between LSPRs and WGMs, and induces significant modulation of the scattering spectra. A measured full width at half‐maximum of 3.2 nm at 622.7 nm is obtained, which is the narrowest in Pd nanoparticle‐based LSPR structures reported up to now. The ultranarrow resonances offer enhanced sensitivity to hydrogen gas detection with a figure of merit reaching ∼2.22. Other advantages of the Pd nanoantenna–microfiber cavity system including independence of precise alignment of excitation light, large tunability of the resonant wavelengths, easy and low‐cost fabrication of the system, have also been demonstrated.

  相似文献   


3.
Photonic structures offer unique opportunities for controlling light‐matter interaction, including the photonic spin Hall effect associated with the transverse spin‐dependent displacement of a light beam that propagates in specially designed optical media. However, due to small spin‐orbit coupling, the photonic spin Hall effect is usually weak at the nanoscale. Here we suggest theoretically and demonstrate experimentally, in both optics and microwave experiments, the photonic spin Hall effect enhanced by topologically protected edge states in subwavelength arrays of resonant dielectric particles. Based on direct near‐field measurements, we observe the selective excitation of the topological edge states controlled by the handedness of the incident light. Additionally, we reveal the main requirements to the symmetry of photonic structures to achieve the topology‐enhanced spin Hall effect, and also analyse the robustness of the photonic edge states against the long‐range coupling.

  相似文献   


4.
We investigate the fractional Schrödinger equation with a periodic ‐symmetric potential. In the inverse space, the problem transfers into a first‐order nonlocal frequency‐delay partial differential equation. We show that at a critical point, the band structure becomes linear and symmetric in the one‐dimensional case, which results in a nondiffracting propagation and conical diffraction of input beams. If only one channel in the periodic potential is excited, adjacent channels become uniformly excited along the propagation direction, which can be used to generate laser beams of high power and narrow width. In the two‐dimensional case, there appears conical diffraction that depends on the competition between the fractional Laplacian operator and the ‐symmetric potential. This investigation may find applications in novel on‐chip optical devices.

  相似文献   


5.
Entangled photon pairs must often be spatially separated for their subsequent manipulation in integrated quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti‐coalescent two‐photon quantum interference. However, such interference‐facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, which has important implications on performance. This work provides a detailed review of IFPS and examines how integrated device dependencies such as dispersion impact separation fidelity and interference visibility. The analysis applies equally to both on‐chip and in‐fiber implementations. When coupler dispersion is present, the separation performance can depend on photon bandwidth, spectral entanglement and the dispersion. By design, reduction in the separation fidelity due to loss of non‐classical interference can be perfectly compensated for by classical wavelength demultiplexing effects. This work informs the design of devices for universal photon pair separation of states with tunable arbitrary properties.

  相似文献   


6.
About twenty years ago, in the autumn of 1996, the first white light‐emitting diodes (LEDs) were offered for sale. These then‐new devices ushered in a new era in lighting by displacing lower‐efficiency conventional light sources including Edison's venerable incandescent lamp as well as the Hg‐discharge‐based fluorescent lamp. We review the history of the conception, improvement, and commercialization of the white LED. Early models of white LEDs already exceeded the efficiency of low‐wattage incandescent lamps, and extraordinary progress has been made during the last 20 years. The review also includes a discussion of advances in blue LED chips, device architecture, light extraction, and phosphors. Finally, we offer a brief outlook on opportunities provided by smart LED technology.

  相似文献   


7.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   


8.
Open‐access microcavities are emerging as a new approach to confine and engineer light at mode volumes down to the λ3 regime. They offer direct access to a highly confined electromagnetic field while maintaining tunability of the system and flexibility for coupling to a range of matter systems. This article presents a study of coupled cavities, for which the substrates are produced using Focused Ion Beam milling. Based on experimental and theoretical investigation the engineering of the coupling between two microcavities with radius of curvature of 6 m is demonstrated. Details are provided by studying the evolution of spectral, spatial and polarisation properties through the transition from isolated to coupled cavities. Normal mode splittings up to 20 meV are observed for total mode volumes around . This work is of importance for future development of lab‐on‐a‐chip sensors and photonic open‐access devices ranging from polariton systems to quantum simulators.

  相似文献   


9.
All‐optical signal processing on nonlinear photonic chips is a burgeoning field. These processes include light generation, optical regeneration and pulse metrology. Nonlinear photonic chips offer the benefits of small footprints, significantly larger nonlinear parameters and flexibility in generating dispersion. The nonlinear compression of optical pulses relies on a delicate balance of a material's nonlinearity and optical dispersion. Recent developments in dispersion engineering on a chip are proving to be key enablers of high‐efficiency integrated optical pulse compression. We review the recent advances made in optical pulse compression based on nonlinear photonic chips, as well as the future outlook and challenges that remain to be solved.

  相似文献   


10.
We uncover that the breaking point of the ‐symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off‐diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which ‐symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry‐breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken ‐symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered‐symmetric waveguide arrays and by analysis of dynamical evolution of single‐site excitations in such structures.

  相似文献   


11.
Recent realization of nontrivial topological phases in photonic systems has provided unprecedented opportunities in steering light flow in novel manners. Based on the Su–Schriffer–Heeger (SSH) model, a topologically protected optical mode was successfully demonstrated in a plasmonic waveguide array with a kinked interface that exhibits a robust nonspreading feature. However, under the same excitation conditions, another antikinked structure seemingly cannot support such a topological interface mode, which appears to be inconsistent with the SSH model. Theoretical calculations are carried out based on the coupled‐mode theory, in which the mode properties, excitation conditions, and the robustness are studied in detail. It is revealed that under the exact eigenstate excitations, both kinked and antikinked structures do support such robust topological interface modes; however, for a realistic single‐waveguide input only the kinked structure does so. It is concluded that the symmetry of interface eigenmodes plays a crucial role, and the odd eigenmode in a kinked structure offers the capacity to excite the nonspreading interface mode in the realistic excitation of a one‐waveguide input. Our finding deepens the understanding of mode excitation and propagation in coupled waveguide systems, and could open a new avenue in optical simulations and photonic designs.

  相似文献   


12.
We present a general theory of circular dichroism in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total optical loss (extinction) is polarization‐independent. We show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with planar chiral nanoparticle clusters.

  相似文献   


13.
The so‐called ‘flat optics’ that shape the amplitude and phase of light with high spatial resolution are presently receiving considerable attention. Numerous journal publications seemingly offer hope for great promises for ultra‐flat metalenses with high efficiency, high numerical aperture, broadband operation… We temperate the expectation by referring to the current status of metalenses against their historical background, assessing the technical and scientific challenges recently solved and critically identifying those that still stand in the way.

  相似文献   


14.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


15.
Dynamic charge carriers play a vital role in active photonic quantum/nanodevices, such as electrically pumped semiconductor lasers. Here we present a systematic experimental study of gain‐providing charge‐carrier distribution in a lasing interband cascade laser. The unique charge‐carrier distribution profile in the quantum‐well active region is quantitatively measured at nanometer scales by using a noninvasive scanning voltage microscopy technique. Experimental results clearly confirm the accumulation and spatial segregation of holes and electrons in the beating heart of the device. The measurement also shows that the charge‐carrier density is essentially clamped in the presence of stimulated emission at low temperatures. The threshold charge‐carrier density exhibits a linear but fairly weak temperature dependence, in contrast to the exponential temperature dependence of the threshold current. The experimental approach will lead to a deeper understanding of fundamental processes that govern the operation and performance of nanoelectronic devices, quantum devices and optoelectronic devices.

  相似文献   


16.
Rectangular arrays of pyramidal recesses coated by silver film are investigated by means of polarization‐resolved nonlinear microscopy at 900 nm fundamental wavelength, demonstrating strong dependence of the dipole‐allowed SHG upon the lattice parameters. The plasmonic band gap causes nearly complete SHG suppression in arrays of 650 nm periodicity, whereas a sharp resonance at 550 nm periodicity is observed due to excitation of band edge Bloch states at fundamental frequency, accompanied by symmetry‐constrained interactions with similar modes at the second‐harmonic frequency. Additionally, coupling with modes at the bottom side of the silver film may lead to extraordinary optical transmission, opening a channel for SHG from the highly nonlinear GaAs substrate. Changing the lattice geometry enables SHG intensity modulation over three orders of magnitude, while the effective nonlinear anisotropy can be continuously switched between the two lattice directions, reaching values as high as ±0.96.

  相似文献   


17.
We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.

  相似文献   


18.
The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady‐state and time‐resolved spectroscopy studies on a series of CdZnS‐based CQDs, we unambiguously clarify that CdZnS‐based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity‐free high‐Q quasitoroid microlasers were produced from self‐assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution‐processed gain materials, which could trigger broad research interests.

  相似文献   


19.
Leaky plasmon modes (LPMs) in metal nanowires (NWs), which combine the physical characteristic of both “plasmonics” and “leaky radiation”, present distinguished performances in terms of guiding and radiating light. In contrast to traditional light‐guiding in metal NWs with one single LPM, multiple LPMs are crucial for advanced uses such as augmenting data transmission channels, enhancing sensing performance, manipulating polarization and converting mode. Here, we demonstrate experimentally the control over multiple LPMs in pentagonal silver NWs. By combining far‐field real‐space imaging and leakage radiation microscopy, the three typical LPMs with fields mainly concentrating in corners surrounded by air are specifically identified. By manipulating excitation wavelengths and NW diameters, the number of the excited LPMs can be controlled. These findings reveal the physics of LPMs in silver NWs, thereby paving the way towards applying the high‐order leaky modes in silver NWs for photonic integrated circuits, nanoscale confinement, plasmonic sensing, QD‐nanowire coupling, etc.

  相似文献   


20.
Nanostructures that feature nonreciprocal light transmission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic‐crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demonstrated, showing very efficient optical diode functionality. The key novelty of the structure is the use of cavity‐enhanced material nonlinearities in combination with spatial symmetry breaking and a Fano resonance to realize nonreciprocal propagation effects at ultralow power and with good wavelength tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit‐rate of 10 Gbit s−1 with a low energy consumption of 4.5 fJ bit−1.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号