首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigate the fractional Schrödinger equation with a periodic ‐symmetric potential. In the inverse space, the problem transfers into a first‐order nonlocal frequency‐delay partial differential equation. We show that at a critical point, the band structure becomes linear and symmetric in the one‐dimensional case, which results in a nondiffracting propagation and conical diffraction of input beams. If only one channel in the periodic potential is excited, adjacent channels become uniformly excited along the propagation direction, which can be used to generate laser beams of high power and narrow width. In the two‐dimensional case, there appears conical diffraction that depends on the competition between the fractional Laplacian operator and the ‐symmetric potential. This investigation may find applications in novel on‐chip optical devices.

  相似文献   


2.
About twenty years ago, in the autumn of 1996, the first white light‐emitting diodes (LEDs) were offered for sale. These then‐new devices ushered in a new era in lighting by displacing lower‐efficiency conventional light sources including Edison's venerable incandescent lamp as well as the Hg‐discharge‐based fluorescent lamp. We review the history of the conception, improvement, and commercialization of the white LED. Early models of white LEDs already exceeded the efficiency of low‐wattage incandescent lamps, and extraordinary progress has been made during the last 20 years. The review also includes a discussion of advances in blue LED chips, device architecture, light extraction, and phosphors. Finally, we offer a brief outlook on opportunities provided by smart LED technology.

  相似文献   


3.
Recently, metasurfaces have received increasing attention due to their ability to locally manipulate the amplitude, phase and polarization of light with high spatial resolution. Transmissive metasurfaces based on high‐index dielectric materials are particularly interesting due to the low intrinsic losses and compatibility with standard industrial processes. Here, it is demonstrated numerically and experimentally that a uniform array of silicon nanodisks can exhibit close‐to‐unity transmission at resonance in the visible spectrum. A single‐layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order. These values represent an improvement over existing state‐of‐the‐art, and are the result of simultaneous excitation and mutual interference of magnetic and electric‐dipole resonances in the nanodisks, which enables directional forward scattering with a broad bandwidth. Due to CMOS compatibility and the relative ease of fabrication, this approach is promising for creation of novel flat optical devices.

  相似文献   


4.
Nonlinear dynamics of continuous‐wave pumped regenerative amplifiers operating at 2 μm are investigated. At repetition rates near 1 kHz, three different operation regimes are observed, including stable regular, chaotic, and subharmonic dynamics. Numerical simulations reproduce this behavior in a quantitative way. In particular, we find stable periodic doubling regimes in which every other seed pulse experiences high gain. Exploiting a narrow parameter window beyond the onset of chaos enables operation of a high‐gain picosecond Ho:YLF regenerative amplifier which delivers up to 16 mJ picosecond pulses at 2050 nm. Energy fluctuations of the 700 Hz pulse train are as low as 0.9% rms.

  相似文献   


5.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


6.
7.
Open‐access microcavities are emerging as a new approach to confine and engineer light at mode volumes down to the λ3 regime. They offer direct access to a highly confined electromagnetic field while maintaining tunability of the system and flexibility for coupling to a range of matter systems. This article presents a study of coupled cavities, for which the substrates are produced using Focused Ion Beam milling. Based on experimental and theoretical investigation the engineering of the coupling between two microcavities with radius of curvature of 6 m is demonstrated. Details are provided by studying the evolution of spectral, spatial and polarisation properties through the transition from isolated to coupled cavities. Normal mode splittings up to 20 meV are observed for total mode volumes around . This work is of importance for future development of lab‐on‐a‐chip sensors and photonic open‐access devices ranging from polariton systems to quantum simulators.

  相似文献   


8.
Branched photonic structures have served as paramount important components for nanophotonic integration and circuitry. However, these structures are generally constructed with photonic and plasmonic nanowires, which are nonbiomaterials and often need to be specially engineered to interface with cells and biological system. For bionanophotonics, photonic components assembled with self‐adaptive biomaterials are highly desirable to be directly interfaced with the dynamic biological system. In this work, branched structures for bionanophotonics assembled with natural living biomaterials, i.e., nanorod‐shaped Escherichia coli bacteria are reported. The E. coli cells were orderly trapped using a specially desired tapered optical fiber, forming structures with different branches and lengths. Light‐propagation performances along these branched structures were investigated, and the robustness property of the structures were demonstrated. The results show that the bacteria‐based branched structures provide different promising self‐sustainable and evolvable components, such as multidirectional waveguides and beam splitters, for bionanophotonics by connecting the biological and optical worlds with a seamless interface.

  相似文献   


9.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   


10.
Entangled photon pairs must often be spatially separated for their subsequent manipulation in integrated quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti‐coalescent two‐photon quantum interference. However, such interference‐facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, which has important implications on performance. This work provides a detailed review of IFPS and examines how integrated device dependencies such as dispersion impact separation fidelity and interference visibility. The analysis applies equally to both on‐chip and in‐fiber implementations. When coupler dispersion is present, the separation performance can depend on photon bandwidth, spectral entanglement and the dispersion. By design, reduction in the separation fidelity due to loss of non‐classical interference can be perfectly compensated for by classical wavelength demultiplexing effects. This work informs the design of devices for universal photon pair separation of states with tunable arbitrary properties.

  相似文献   


11.
We uncover that the breaking point of the ‐symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off‐diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which ‐symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry‐breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken ‐symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered‐symmetric waveguide arrays and by analysis of dynamical evolution of single‐site excitations in such structures.

  相似文献   


12.
The rise of semiconductor‐based pump sources such as InxGa1‐xN‐laser diodes or frequency‐doubled optically pumped semiconductor lasers with emission wavelengths in the blue encourages a revisitation of the rare‐earth ions Pr3+, Sm3+, Tb3+, Dy3+, Ho3+ and Er3+ with respect to their properties as active ions in crystalline solid‐state laser materials with direct emission in the visible spectral range. Nowadays, some of these blue‐pumped visible lasers compete with Nd3+‐lasers in terms of efficiency and direct lasing at various colors from the cyan‐blue to the deep red can be addressed in very simple and compact laser setups. This paper highlights the spectroscopic properties of suitable rare‐earth ions for visible lasing and reviews the latest progress in the field of blue‐pumped visible rare‐earth doped solid‐state lasers.

  相似文献   


13.
Surface‐plasmon‐polariton waves are two‐dimensional electromagnetic surface waves that propagate at the interface between a metal and a dielectric. These waves exhibit unusual and attractive properties, such as high spatial confinement and enhancement of the optical field, and are widely used in a variety of applications, such as sensing and subwavelength optics. The ability to precisely control the spatial and spectral properties of the surface‐plasmon wave is required in order to support the growing interest in both research and applications of plasmonic waves, and to bring it to the next level. Here, we review the challenges and methods for shaping the wavefront and spectrum of plasmonic waves. In particular, we present the recent advances in plasmonic spatial and spectral shaping, which are based on the realization of plasmonic holograms for the optical nearfield.

  相似文献   


14.
We report on the realisation of ultra‐small‐mode‐volume tunable dye lasers based on hemispherical open microcavities. The cavity mode volume is of the order of cubic micrometers, such that self‐diffusion of the dye molecules allows continuous wave operation over several minutes without the need for driven circulation. Such micro lasers could be integrated into lab‐on‐a‐chip devices. A rate‐equation model that incorporates the diffusion mechanism is used to predict the effect of the microcavity parameters on the lasing threshold.

  相似文献   


15.
The broadband enhancement of single‑photon emission from nitrogen‐vacancy centers in nanodiamonds coupled to a planar multilayer metamaterial with hyperbolic dispersion is studied experimentally. The metamaterial is fabricated as an epitaxial metal/dielectric superlattice consisting of CMOS‐compatible ceramics: titanium nitride (TiN) and aluminum scandium nitride (AlxSc1‐xN). It is demonstrated that employing the metamaterial results in significant enhancement of collected single‑photon emission and reduction of the excited‐state lifetime. Our results could have an impact on future CMOS‐compatible integrated quantum sources.

  相似文献   


16.
The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady‐state and time‐resolved spectroscopy studies on a series of CdZnS‐based CQDs, we unambiguously clarify that CdZnS‐based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity‐free high‐Q quasitoroid microlasers were produced from self‐assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution‐processed gain materials, which could trigger broad research interests.

  相似文献   


17.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


18.
In the development of microfluidic chips, conventional 2D processing technologies contribute to the manufacturing of basic microchannel networks. Nevertheless, in the pursuit of versatile microfluidic chips, flexible integration of multifunctional components within a tiny chip is still challenging because a chip containing micro‐channels is a non‐flat substrate. Recently, on‐chip laser processing (OCLP) technology has emerged as an appealing alternative to achieve chip functionalization through in situ fabrication of 3D microstructures. Here, the recent development of OCLP‐enabled multifunctional microfluidic chips, including several accessible photochemical/photophysical schemes, and photosensitive materials permiting OCLP, is reviewed. To demonstrate the capability of OCLP technology, a series of typical micro‐components fabricated using OCLP are introduced. The prospects and current challenges of this field are discussed.

  相似文献   


19.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


20.
Detecting the optical vortices of darkness hidden in an ultra‐weak background is a difficult task. Here we report an experiment demonstrating that the optical vortices can be directly visualized and identified with a smaller number of photons. Our method is based on the extension of the spiral phase contrast technique to incorporate vortex phase plates (VPP) of high‐order topological charges. In our experiment, we prepare optical vortex arrays of interesting structures such as Arabic numerals and the wings carrying various topological charges. By placing various VPP filters in the Fourier plane of a 4f imaging system, the embedded vortices of an incident ultra‐weak light field can be visualized, revealing both their positions and topological charges. It is found that a higher order vortex generally requires a smaller number of photons to be detected. Our method may find potential application in the fields of astronomical optics and biosensing in an ultra‐weak light environment.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号